Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-016-0985-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huang, Xiaoxia & Ma, Di & Choe, Kwang-Il, 2023. "Uncertain mean–variance portfolio model with inflation taking linear uncertainty distributions," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 203-217.
- Wasim Akram Mandal, 2021. "Weighted Tchebycheff Optimization Technique Under Uncertainty," Annals of Data Science, Springer, vol. 8(4), pages 709-731, December.
- Tingting Yang & Xiaoxia Huang, 2022. "A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 723-747, November.
- Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
- Dennis L. Bricker & K. O. Kortanek, 2017. "Perfect Duality in Solving Geometric Programming Problems Under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 1055-1065, June.
- Wasim Akram Mandal & Sahidul Islam, 2017. "Multiobjective geometric programming problem under uncertainty," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(4), pages 85-109.
- Belleh Fontem, 2023. "Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 765-797, May.
More about this item
Keywords
Uncertainty theory; Uncertain variable; Linear uncertainty distribution; Normal uncertainty distribution; Zigzag uncertainty distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:170:y:2016:i:3:d:10.1007_s10957-016-0985-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.