IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v170y2016i1d10.1007_s10957-016-0902-5.html
   My bibliography  Save this article

Fuzzy Portfolio Selection Including Cardinality Constraints and Integer Conditions

Author

Listed:
  • Clara Calvo

    (Universitat de València)

  • Carlos Ivorra

    (Universitat de València)

  • Vicente Liern

    (Universitat de València)

Abstract

This paper is concerned with a fuzzy version of the portfolio selection problem, which includes diversification conditions and incorporates investor’s subjective preferences. The inclusion of diversification conditions leads to mixed-integer models, which are computationally demanding. On the other hand, the consideration of integer conditions makes the solution very sensitive to investor’s subjective preferences with regard to the trade-off between risk and expected return. These preferences are imprecise by their very nature. In this paper, we overcome these issues by proposing a solution method for a fuzzy quadratic portfolio selection model with integer conditions. The suitability of the proposed method is illustrated by means of two numerical examples.

Suggested Citation

  • Clara Calvo & Carlos Ivorra & Vicente Liern, 2016. "Fuzzy Portfolio Selection Including Cardinality Constraints and Integer Conditions," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 343-355, July.
  • Handle: RePEc:spr:joptap:v:170:y:2016:i:1:d:10.1007_s10957-016-0902-5
    DOI: 10.1007/s10957-016-0902-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0902-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0902-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leon, T. & Liern, V. & Vercher, E., 2002. "Viability of infeasible portfolio selection problems: A fuzzy approach," European Journal of Operational Research, Elsevier, vol. 139(1), pages 178-189, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Abdul Halim, 2023. "Catastrophe Bond Diversification Strategy Using Probabilistic–Possibilistic Bijective Transformation and Credibility Measures in Fuzzy Environment," Mathematics, MDPI, vol. 11(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    2. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    3. Takashi Hasuike & Mukesh Kumar Mehlawat, 2018. "Investor-friendly and robust portfolio selection model integrating forecasts for financial tendency and risk-averse," Annals of Operations Research, Springer, vol. 269(1), pages 205-221, October.
    4. Takashi Hasuike & Hiroaki Ishii, 2009. "Probability maximization models for portfolio selection under ambiguity," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(2), pages 159-180, June.
    5. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    6. Xi-li Zhang & Wei-Guo Zhang & Wei-jun Xu & Wei-Lin Xiao, 2010. "Possibilistic Approaches to Portfolio Selection Problem with General Transaction Costs and a CLPSO Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 36(3), pages 191-200, October.
    7. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    8. Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
    9. C Papahristodoulou & E Dotzauer, 2004. "Optimal portfolios using linear programming models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1169-1177, November.
    10. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    11. Li, Ting & Zhang, Weiguo & Xu, Weijun, 2013. "Fuzzy possibilistic portfolio selection model with VaR constraint and risk-free investment," Economic Modelling, Elsevier, vol. 31(C), pages 12-17.
    12. Jiuping Xu & Xiaoyang Zhou & Steven Li, 2011. "A Class of Chance Constrained Multi-objective Portfolio Selection Model Under Fuzzy Random Environment," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 530-552, September.
    13. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.
    14. Madlener, Reinhard & Glensk, Barbara & Weber, Veronika, 2011. "Fuzzy Portfolio Optimization of Onshore Wind Power Plants," FCN Working Papers 10/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jul 2014.
    15. Zhang, Wei-Guo & Zhang, Xili & Chen, Yunxia, 2011. "Portfolio adjusting optimization with added assets and transaction costs based on credibility measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 353-360.
    16. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    17. Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
    18. Hemant Jalota & Manoj Thakur, 2018. "Genetic algorithm designed for solving portfolio optimization problems subjected to cardinality constraint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 294-305, February.
    19. Zhang, Wei-Guo & Zhang, Xi-Li & Xu, Wei-Jun, 2010. "A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 493-499, June.
    20. Masoud Fekri & Babak Barazandeh, 2019. "Designing an Optimal Portfolio for Iran's Stock Market with Genetic Algorithm using Neural Network Prediction of Risk and Return Stocks," Papers 1903.06632, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:170:y:2016:i:1:d:10.1007_s10957-016-0902-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.