IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i1d10.1007_s10957-013-0464-8.html
   My bibliography  Save this article

On the Solution of the Inverse Eigenvalue Complementarity Problem

Author

Listed:
  • Carmo P. Brás

    (Universidade Nova de Lisboa)

  • Joaquim J. Júdice

    (Instituto de Telecomunicações)

  • Hanif D. Sherali

    (Virginia Tech.)

Abstract

In this paper, we discuss the solution of an Inverse Eigenvalue Complementarity Problem. Two nonlinear formulations are presented for this problem. A necessary and sufficient condition for a stationary point of the first of these formulations to be a solution of the problem is established. On the other hand, to assure global convergence to a solution of this problem when it exists, an enumerative algorithm is designed by exploiting the structure of the second formulation. The use of additional implied constraints for enhancing the efficiency of the algorithm is also discussed. Computational results are provided to highlight the performance of the algorithm.

Suggested Citation

  • Carmo P. Brás & Joaquim J. Júdice & Hanif D. Sherali, 2014. "On the Solution of the Inverse Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 88-106, July.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:1:d:10.1007_s10957-013-0464-8
    DOI: 10.1007/s10957-013-0464-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0464-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0464-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoai Le Thi & Mahdi Moeini & Tao Pham Dinh & Joaquim Judice, 2012. "A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1097-1117, April.
    2. Pedro Gajardo & Alberto Seeger, 2012. "Reconstructing a matrix from a partial sampling of Pareto eigenvalues," Computational Optimization and Applications, Springer, vol. 51(3), pages 1119-1135, April.
    3. A. Pinto da Costa & A. Seeger, 2010. "Cone-constrained eigenvalue problems: theory and algorithms," Computational Optimization and Applications, Springer, vol. 45(1), pages 25-57, January.
    4. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
    2. Brás, Carmo P. & Fukushima, Masao & Iusem, Alfredo N. & Júdice, Joaquim J., 2015. "On the Quadratic Eigenvalue Complementarity Problem over a general convex cone," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 594-608.
    3. Luís Fernandes & Joaquim Júdice & Hanif Sherali & Masao Fukushima, 2014. "On the computation of all eigenvalues for the eigenvalue complementarity problem," Journal of Global Optimization, Springer, vol. 59(2), pages 307-326, July.
    4. Masao Fukushima & Joaquim Júdice & Welington Oliveira & Valentina Sessa, 2020. "A sequential partial linearization algorithm for the symmetric eigenvalue complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 711-728, December.
    5. Luís Fernandes & Joaquim Júdice & Hanif Sherali & Maria Forjaz, 2014. "On an enumerative algorithm for solving eigenvalue complementarity problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 113-134, October.
    6. Fatemeh Abdi & Fatemeh Shakeri, 2017. "A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 923-940, June.
    7. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    8. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    9. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    10. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    11. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    12. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    13. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    14. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    15. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    16. A. K. Das, 2016. "Properties of some matrix classes based on principal pivot transform," Annals of Operations Research, Springer, vol. 243(1), pages 375-382, August.
    17. Meijuan Shang & Chao Zhang & Naihua Xiu, 2014. "Minimal Zero Norm Solutions of Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 795-814, December.
    18. Massol, Olivier & Rifaat, Omer, 2018. "Phasing out the U.S. Federal Helium Reserve: Policy insights from a world helium model," Resource and Energy Economics, Elsevier, vol. 54(C), pages 186-211.
    19. S. R. Mohan, 1997. "Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 409-423, August.
    20. Thiruvankatachari Parthasarathy & Gomatam Ravindran & Sunil Kumar, 2022. "On Semimonotone Matrices, $$R_0$$ R 0 -Matrices and Q-Matrices," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 131-147, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:1:d:10.1007_s10957-013-0464-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.