IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i1d10.1007_s10957-013-0449-7.html
   My bibliography  Save this article

A Class of Fejér Convergent Algorithms, Approximate Resolvents and the Hybrid Proximal-Extragradient Method

Author

Listed:
  • Benar F. Svaiter

    (IMPA)

Abstract

A new framework for analyzing Fejér convergent algorithms is presented. Using this framework, we define a very general class of Fejér convergent algorithms and establish its convergence properties. We also introduce a new definition of approximations of resolvents, which preserves some useful features of the exact resolvent and use this concept to present an unifying view of the Forward-Backward splitting method, Tseng’s Modified Forward-Backward splitting method, and Korpelevich’s method. We show that methods, based on families of approximate resolvents, fall within the aforementioned class of Fejér convergent methods. We prove that such approximate resolvents are the iteration maps of the Hybrid Proximal-Extragradient method, which is a generalization of the classical Proximal Point Algorithm.

Suggested Citation

  • Benar F. Svaiter, 2014. "A Class of Fejér Convergent Algorithms, Approximate Resolvents and the Hybrid Proximal-Extragradient Method," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 133-153, July.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:1:d:10.1007_s10957-013-0449-7
    DOI: 10.1007/s10957-013-0449-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0449-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0449-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfredo N. Iusem & B. F. Svaiter & Marc Teboulle, 1994. "Entropy-Like Proximal Methods in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 790-814, November.
    2. R. S. Burachik & S. Scheimberg & B. F. Svaiter, 2001. "Robustness of the Hybrid Extragradient Proximal-Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 117-136, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.
    2. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems," Mathematics, MDPI, vol. 7(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2021. "A Projected Forward-Backward Algorithm for Constrained Minimization with Applications to Image Inpainting," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    2. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    3. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    4. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    5. A. N. Iusem, 1998. "On Some Properties of Generalized Proximal Point Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 337-362, February.
    6. Ceng, Lu-Chuan & Yao, Jen-Chih, 2007. "Approximate proximal methods in vector optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 1-19, November.
    7. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    8. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    9. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    10. R. Jiménez & J. E. Yukich, 2002. "Asymptotics for Statistical Distances Based on Voronoi Tessellations," Journal of Theoretical Probability, Springer, vol. 15(2), pages 503-541, April.
    11. J. Y. Bello Cruz & R. Díaz Millán, 2014. "A Direct Splitting Method for Nonsmooth Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 728-737, June.
    12. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    13. Pinheiro, Ricardo B.N.M. & Lage, Guilherme G. & da Costa, Geraldo R.M., 2019. "A primal-dual integrated nonlinear rescaling approach applied to the optimal reactive dispatch problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1137-1153.
    14. Yuan Shen & Hongyong Wang, 2016. "New Augmented Lagrangian-Based Proximal Point Algorithm for Convex Optimization with Equality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 251-261, October.
    15. Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
    16. H. Attouch & M. Teboulle, 2004. "Regularized Lotka-Volterra Dynamical System as Continuous Proximal-Like Method in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 541-570, June.
    17. Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.
    18. J. Cruz Neto & G. Silva & O. Ferreira & J. Lopes, 2013. "A subgradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 461-472, April.
    19. J. Y. Bello Cruz & R. Díaz Millán, 2016. "A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces," Journal of Global Optimization, Springer, vol. 65(3), pages 597-614, July.
    20. K. Kiwiel, 1995. "Proximal Minimization Methods with Generalized Bregman Functions," Working Papers wp95024, International Institute for Applied Systems Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:1:d:10.1007_s10957-013-0449-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.