IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i1d10.1007_s10898-023-01341-5.html
   My bibliography  Save this article

On inexact versions of a quasi-equilibrium problem: a Cournot duopoly perspective

Author

Listed:
  • E. L. Dias Júnior

    (Federal University of Piauí)

  • P. J. S. Santos

    (Universidade Federal do Delta do Parnaíba)

  • A. Soubeyran

    (Aix-Marseille University)

  • J. C. O. Souza

    (France and Department of Mathematics, CCN, Federal University of Piauí)

Abstract

This paper has two parts. In the mathematical part, we present two inexact versions of the proximal point method for solving quasi-equilibrium problems (QEP) in Hilbert spaces. Under mild assumptions, we prove that the methods find a solution to the quasi-equilibrium problem with an approximated computation of each iteration or using a perturbation of the regularized bifunction. In the behavioral part, we justify the choice of the new perturbation, with the help of the main example that drives quasi-equilibrium problems: the Cournot duopoly model, which founded game theory. This requires to exhibit a new QEP reformulation of the Cournot model that will appear more intuitive and rigorous. It leads directly to the formulation of our perturbation function. Some numerical experiments show the performance of the proposed methods.

Suggested Citation

  • E. L. Dias Júnior & P. J. S. Santos & A. Soubeyran & J. C. O. Souza, 2024. "On inexact versions of a quasi-equilibrium problem: a Cournot duopoly perspective," Journal of Global Optimization, Springer, vol. 89(1), pages 171-196, May.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01341-5
    DOI: 10.1007/s10898-023-01341-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01341-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01341-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01341-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.