IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v119y2003i2d10.1023_bjota.0000005448.12716.24.html
   My bibliography  Save this article

Application of the Proximal Point Method to Nonmonotone Equilibrium Problems

Author

Listed:
  • I.V. Konnov

    (Kazan University)

Abstract

We consider a general equilibrium problem defined on a convex set, whose cost bifunction may not be monotone. We show that this problem can be solved by the inexact proximal point method if there exists a solution to the dual problem. An application of this approach to nonlinearly constrained problems is also suggested.

Suggested Citation

  • I.V. Konnov, 2003. "Application of the Proximal Point Method to Nonmonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 317-333, November.
  • Handle: RePEc:spr:joptap:v:119:y:2003:i:2:d:10.1023_b:jota.0000005448.12716.24
    DOI: 10.1023/B:JOTA.0000005448.12716.24
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000005448.12716.24
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000005448.12716.24?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. V. Konnov & S. Schaible, 2000. "Duality for Equilibrium Problems under Generalized Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 395-408, February.
    2. Konnov, I.V. & Schaible, S., 1998. "Duality for Equilibrium Problems," The A. Gary Anderson Graduate School of Management 98-05, The A. Gary Anderson Graduate School of Management. University of California Riverside.
    3. N. El Farouq, 2001. "Pseudomonotone Variational Inequalities: Convergence of Proximal Methods," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 311-326, May.
    4. N. El Farouq, 2001. "Pseudomonotone Variational Inequalities: Convergence of the Auxiliary Problem Method," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 305-322, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M.A. Noor, 2002. "Proximal Methods for Mixed Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 453-459, November.
    2. M. Fakhar & J. Zafarani, 2004. "Generalized Equilibrium Problems for Quasimonotone and Pseudomonotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 349-364, November.
    3. M.A. Noor, 2002. "Proximal Methods for Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 447-452, November.
    4. Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
    5. Friesz, Terry L. & Han, Ke & Bagherzadeh, Amir, 2021. "Convergence of fixed-point algorithms for elastic demand dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 336-352.
    6. L.J. Lin & Q.H. Ansari & J.Y. Wu, 2003. "Geometric Properties and Coincidence Theorems with Applications to Generalized Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 121-137, April.
    7. M. A. Noor, 2004. "Auxiliary Principle Technique for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 371-386, August.
    8. E. Allevi & A. Gnudi & I.V. Konnov & S. Schaible, 2003. "Noncooperative Games with Vector Payoffs Under Relative Pseudomonotonicity," Journal of Optimization Theory and Applications, Springer, vol. 118(2), pages 245-254, August.
    9. N. N. Tam & J. C. Yao & N. D. Yen, 2008. "Solution Methods for Pseudomonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 253-273, August.
    10. Yuehu Wang & Baoqing Liu, 2019. "Order-Preservation Properties of Solution Mapping for Parametric Equilibrium Problems and Their Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 881-901, December.
    11. Nicuşor Costea & Daniel Alexandru Ion & Cezar Lupu, 2012. "Variational-Like Inequality Problems Involving Set-Valued Maps and Generalized Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 79-99, October.
    12. Boualem Alleche & Vicenţiu D. Rădulescu, 2016. "Solutions and Approximate Solutions of Quasi-Equilibrium Problems in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 629-649, August.
    13. Pham Khanh & Phan Vuong, 2014. "Modified projection method for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 58(2), pages 341-350, February.
    14. L. Anh & P. Khanh & T. Tam, 2015. "On Hölder continuity of solution maps of parametric primal and dual Ky Fan inequalities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 151-167, April.
    15. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    16. E. Allevi & A. Gnudi & I. Konnov, 2006. "The Proximal Point Method for Nonmonotone Variational Inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 553-565, July.
    17. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    18. N. El Farouq, 2004. "Convergent Algorithm Based on Progressive Regularization for Solving Pseudomonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 455-485, March.
    19. Nils Langenberg, 2010. "Pseudomonotone operators and the Bregman Proximal Point Algorithm," Journal of Global Optimization, Springer, vol. 47(4), pages 537-555, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:119:y:2003:i:2:d:10.1023_b:jota.0000005448.12716.24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.