IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v154y2012i1d10.1007_s10957-012-0002-0.html
   My bibliography  Save this article

Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints

Author

Listed:
  • Arnaldo S. Brito

    (Federal University of Rio de Janeiro)

  • J. X. Cruz Neto

    (Federal University of Piaui)

  • Jurandir O. Lopes

    (Federal University of Piaui)

  • P. Roberto Oliveira

    (COPPE/Sistemas-Universidade Federal do Rio de Janeiro)

Abstract

In this paper, we propose two interior proximal algorithms inspired by the logarithmic-quadratic proximal method. The first method we propose is for general linearly constrained quasiconvex minimization problems. For this method, we prove global convergence when the regularization parameters go to zero. The latter assumption can be dropped when the function is assumed to be pseudoconvex. We also obtain convergence results for quasimonotone variational inequalities, which are more general than monotone ones.

Suggested Citation

  • Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
  • Handle: RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-012-0002-0
    DOI: 10.1007/s10957-012-0002-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0002-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0002-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Aussel, 1998. "Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 29-45, April.
    2. Alfredo N. Iusem & B. F. Svaiter & Marc Teboulle, 1994. "Entropy-Like Proximal Methods in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 790-814, November.
    3. N. El Farouq, 2001. "Pseudomonotone Variational Inequalities: Convergence of Proximal Methods," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 311-326, May.
    4. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    5. A. Daniilidis & N. Hadjisavvas, 1999. "Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 525-536, September.
    6. N. El Farouq, 2001. "Pseudomonotone Variational Inequalities: Convergence of the Auxiliary Problem Method," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 305-322, November.
    7. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    8. Marc Teboulle, 1992. "Entropic Proximal Mappings with Applications to Nonlinear Programming," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 670-690, August.
    9. J.P. Penot, 2003. "Characterization of Solution Sets of Quasiconvex Programs," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 627-636, June.
    10. Alfred Auslender & Marc Teboulle & Sami Ben-Tiba, 1999. "Interior Proximal and Multiplier Methods Based on Second Order Homogeneous Kernels," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 645-668, August.
    11. Souza, Sissy da S. & Oliveira, P.R. & da Cruz Neto, J.X. & Soubeyran, A., 2010. "A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 201(2), pages 365-376, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    2. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    3. S.-M. Grad & F. Lara & R. T. Marcavillaca, 2023. "Relaxed-inertial proximal point type algorithms for quasiconvex minimization," Journal of Global Optimization, Springer, vol. 85(3), pages 615-635, March.
    4. E. A. Papa Quiroz & S. Cruzado, 2022. "An inexact scalarization proximal point method for multiobjective quasiconvex minimization," Annals of Operations Research, Springer, vol. 316(2), pages 1445-1470, September.
    5. Papa Quiroz, E.A. & Mallma Ramirez, L. & Oliveira, P.R., 2015. "An inexact proximal method for quasiconvex minimization," European Journal of Operational Research, Elsevier, vol. 246(3), pages 721-729.
    6. Minglu Ye & Yiran He, 2015. "A double projection method for solving variational inequalities without monotonicity," Computational Optimization and Applications, Springer, vol. 60(1), pages 141-150, January.
    7. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    8. Hongwei Liu & Jun Yang, 2020. "Weak convergence of iterative methods for solving quasimonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 491-508, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    2. Papa Quiroz, E.A. & Mallma Ramirez, L. & Oliveira, P.R., 2015. "An inexact proximal method for quasiconvex minimization," European Journal of Operational Research, Elsevier, vol. 246(3), pages 721-729.
    3. E. A. Papa Quiroz & S. Cruzado, 2022. "An inexact scalarization proximal point method for multiobjective quasiconvex minimization," Annals of Operations Research, Springer, vol. 316(2), pages 1445-1470, September.
    4. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    5. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    6. H. Attouch & M. Teboulle, 2004. "Regularized Lotka-Volterra Dynamical System as Continuous Proximal-Like Method in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 541-570, June.
    7. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    8. M.A. Noor, 2002. "Proximal Methods for Mixed Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 453-459, November.
    9. Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
    10. I.V. Konnov, 2003. "Application of the Proximal Point Method to Nonmonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 317-333, November.
    11. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    12. Pinheiro, Ricardo B.N.M. & Lage, Guilherme G. & da Costa, Geraldo R.M., 2019. "A primal-dual integrated nonlinear rescaling approach applied to the optimal reactive dispatch problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1137-1153.
    13. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    14. M.A. Noor, 2002. "Proximal Methods for Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 447-452, November.
    15. Volkovich, Vladimir & Kogan, Jacob & Nicholas, Charles, 2007. "Building initial partitions through sampling techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1097-1105, December.
    16. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    17. Friesz, Terry L. & Han, Ke & Bagherzadeh, Amir, 2021. "Convergence of fixed-point algorithms for elastic demand dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 336-352.
    18. Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.
    19. Vsevolod Ivanov, 2010. "On a theorem due to Crouzeix and Ferland," Journal of Global Optimization, Springer, vol. 46(1), pages 31-47, January.
    20. K. Kiwiel, 1995. "Proximal Minimization Methods with Generalized Bregman Functions," Working Papers wp95024, International Institute for Applied Systems Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-012-0002-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.