IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v118y2003i2d10.1023_a1025491103925.html
   My bibliography  Save this article

Noncooperative Games with Vector Payoffs Under Relative Pseudomonotonicity

Author

Listed:
  • E. Allevi

    (University of Bergamo)

  • A. Gnudi

    (University of Bergamo)

  • I.V. Konnov

    (Kazan University
    Institute for Informatics Problems)

  • S. Schaible

    (University of California)

Abstract

We consider the Nash equilibrium problem with vector payoffs in a topological vector space. By employing the recent concept of relative (pseudo) monotonicity, we establish several existence results for vector Nash equilibria and vector equilibria. The results strengthen in a major way existence results for vector equilibrium problems which were based on the usual (generalized) monotonicity concepts.

Suggested Citation

  • E. Allevi & A. Gnudi & I.V. Konnov & S. Schaible, 2003. "Noncooperative Games with Vector Payoffs Under Relative Pseudomonotonicity," Journal of Optimization Theory and Applications, Springer, vol. 118(2), pages 245-254, August.
  • Handle: RePEc:spr:joptap:v:118:y:2003:i:2:d:10.1023_a:1025491103925
    DOI: 10.1023/A:1025491103925
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1025491103925
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1025491103925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. V. Konnov & S. Schaible, 2000. "Duality for Equilibrium Problems under Generalized Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 395-408, February.
    2. E. Allevi & A. Gnudi & I.V. Konnov, 2004. "Generalized Vector Variational Inequalities over Countable Product of Sets," Journal of Global Optimization, Springer, vol. 30(2), pages 155-167, November.
    3. I. V. Konnov, 2001. "Combined Relaxation Method for Monotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 327-340, November.
    4. Konnov, I.V. & Schaible, S., 1998. "Duality for Equilibrium Problems," The A. Gary Anderson Graduate School of Management 98-05, The A. Gary Anderson Graduate School of Management. University of California Riverside.
    5. M. Bianchi & N. Hadjisavvas & S. Schaible, 1997. "Vector Equilibrium Problems with Generalized Monotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 527-542, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annamaria Barbagallo & Stéphane Pia, 2011. "Weighted variational inequalities in non-pivot Hilbert spaces with applications," Computational Optimization and Applications, Springer, vol. 48(3), pages 487-514, April.
    2. Luisa Monroy & Amparo M. Mármol & Victoriana Rubiales, 2005. "A bargaining model for finite n-person multi-criteria games," Economic Working Papers at Centro de Estudios Andaluces E2005/21, Centro de Estudios Andaluces.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L.J. Lin & Q.H. Ansari & J.Y. Wu, 2003. "Geometric Properties and Coincidence Theorems with Applications to Generalized Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 121-137, April.
    2. Q. H. Ansari & I. V. Konnov & J. C. Yao, 2001. "Existence of a Solution and Variational Principles for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 481-492, September.
    3. I.V. Konnov, 2003. "Application of the Proximal Point Method to Nonmonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 317-333, November.
    4. M. Fakhar & J. Zafarani, 2004. "Generalized Equilibrium Problems for Quasimonotone and Pseudomonotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 349-364, November.
    5. Monica Bianchi & Siegfried Schaible, 2004. "Equilibrium Problems under Generalized Convexity and Generalized Monotonicity," Journal of Global Optimization, Springer, vol. 30(2), pages 121-134, November.
    6. Q.H. Ansari & I.V. Konnov & J.C. Yao, 2002. "Characterizations of Solutions for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 435-447, June.
    7. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    8. L. C. Zeng & J. C. Yao, 2006. "Modified Combined Relaxation Method for General Monotone Equilibrium Problems in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 469-483, December.
    9. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    10. M. Bianchi & R. Pini, 2002. "A Result on Localization of Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 335-343, November.
    11. Yuehu Wang & Baoqing Liu, 2019. "Order-Preservation Properties of Solution Mapping for Parametric Equilibrium Problems and Their Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 881-901, December.
    12. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    13. Yu Han, 2018. "Lipschitz Continuity of Approximate Solution Mappings to Parametric Generalized Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 763-793, September.
    14. J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
    15. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    16. Junyi Fu & Sanhua Wang, 2013. "Generalized strong vector quasi-equilibrium problem with domination structure," Journal of Global Optimization, Springer, vol. 55(4), pages 839-847, April.
    17. S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
    18. Nicuşor Costea & Daniel Alexandru Ion & Cezar Lupu, 2012. "Variational-Like Inequality Problems Involving Set-Valued Maps and Generalized Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 79-99, October.
    19. Jing-Nan Li & San-Hua Wang & Yu-Ping Xu, 2020. "Set-Valued Symmetric Generalized Strong Vector Quasi-Equilibrium Problems with Variable Ordering Structures," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    20. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:118:y:2003:i:2:d:10.1023_a:1025491103925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.