IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v124y2005i3d10.1007_s10957-004-1183-y.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Generalized Differential Properties of the Auslender Gap Function for Variational Inequalities

Author

Listed:
  • S. J. Li

    (Chongqing University)

  • S. H. Hou

    (Hong Kong Polytechnic University)

  • G. Y. Chen

    (Chinese Academy of Science)

Abstract

In this note, the Auslender gap function, which is used to formulate a variational inequality into an equivalent minimization problem, is shown to be differentiable in the generalized sense and has a lower contingent derivative under suitable conditions. This enables us to establish necessary and sufficient conditions for the existence of a solution to problems of variational inequalities.

Suggested Citation

  • S. J. Li & S. H. Hou & G. Y. Chen, 2005. "Generalized Differential Properties of the Auslender Gap Function for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 739-749, March.
  • Handle: RePEc:spr:joptap:v:124:y:2005:i:3:d:10.1007_s10957-004-1183-y
    DOI: 10.1007/s10957-004-1183-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-1183-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-1183-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stella Dafermos, 1988. "Sensitivity Analysis in Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 13(3), pages 421-434, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Miller & Terry Friesz & Roger Tobin & Changhyun Kwon, 2007. "Reaction Function Based Dynamic Location Modeling in Stackelberg–Nash–Cournot Competition," Networks and Spatial Economics, Springer, vol. 7(1), pages 77-97, March.
    2. G. Kassay & J. Kolumban, 2000. "Multivalued Parametric Variational Inequalities with α-Pseudomonotone Maps," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 35-50, October.
    3. S.J. Li & G.Y. Chen & K.L. Teo, 2002. "On the Stability of Generalized Vector Quasivariational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 283-295, May.
    4. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2022. "Higher-order set-valued Hadamard directional derivatives: calculus rules and sensitivity analysis of equilibrium problems and generalized equations," Journal of Global Optimization, Springer, vol. 83(2), pages 377-402, June.
    5. Le Tuan & Gue Lee & Pham Sach, 2010. "Upper semicontinuity result for the solution mapping of a mixed parametric generalized vector quasiequilibrium problem with moving cones," Journal of Global Optimization, Springer, vol. 47(4), pages 639-660, August.
    6. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    7. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    8. X. P. Ding & C. L. Luo, 1999. "On Parametric Generalized Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 100(1), pages 195-205, January.
    9. Eraslan, Hülya & McLennan, Andrew, 2013. "Uniqueness of stationary equilibrium payoffs in coalitional bargaining," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2195-2222.
    10. Ren-you Zhong & Nan-jing Huang, 2011. "Lower Semicontinuity for Parametric Weak Vector Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 564-579, June.
    11. M. A. Noor, 1997. "Sensitivity Analysis for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 399-407, November.
    12. Rosa Camps & Xavier Mora & Laia Saumell, 2013. "A continuous rating method for preferential voting. The incomplete case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1111-1142, April.
    13. C. S. Lalitha & Guneet Bhatia, 2011. "Stability of Parametric Quasivariational Inequality of the Minty Type," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 281-300, February.
    14. Cho, Hsun-Jung & Smith, Tony E. & Friesz, Terry L., 2000. "A reduction method for local sensitivity analyses of network equilibrium arc flows," Transportation Research Part B: Methodological, Elsevier, vol. 34(1), pages 31-51, January.
    15. P. Q. Khanh & L. M. Luu, 2007. "Lower Semicontinuity and Upper Semicontinuity of the Solution Sets and Approximate Solution Sets of Parametric Multivalued Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 329-339, June.
    16. Parise, Francesca & Ozdaglar, Asuman, 2019. "A variational inequality framework for network games: Existence, uniqueness, convergence and sensitivity analysis," Games and Economic Behavior, Elsevier, vol. 114(C), pages 47-82.
    17. Byung Chung & Hsun-Jung Cho & Terry Friesz & Henh Huang & Tao Yao, 2014. "Sensitivity Analysis of User Equilibrium Flows Revisited," Networks and Spatial Economics, Springer, vol. 14(2), pages 183-207, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:124:y:2005:i:3:d:10.1007_s10957-004-1183-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.