IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v101y1999i3d10.1023_a1021790120780.html
   My bibliography  Save this article

Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators

Author

Listed:
  • V. Jeyakumar

    (University of New South Wales)

  • D. T. Luc

    (Institute of Mathematics)

Abstract

Noncompact convexificators, which provide upper convex and lower concave approximations for a continuous function, are defined. Various calculus rules, including extremality and mean-value properties, are presented. Regularity conditions are given for convexificators to be minimal. A characterization of quasiconvexity of a continuous function is obtained in terms of the quasimonotonicity of convexificators.

Suggested Citation

  • V. Jeyakumar & D. T. Luc, 1999. "Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 599-621, June.
  • Handle: RePEc:spr:joptap:v:101:y:1999:i:3:d:10.1023_a:1021790120780
    DOI: 10.1023/A:1021790120780
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021790120780
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021790120780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Do Luu & Tran Thi Mai, 2018. "Optimality and duality in constrained interval-valued optimization," 4OR, Springer, vol. 16(3), pages 311-337, September.
    2. Do Luu, 2016. "Optimality Condition for Local Efficient Solutions of Vector Equilibrium Problems via Convexificators and Applications," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 643-665, November.
    3. A. Fischer & V. Jeyakumar & D. T. Luc, 2001. "Solution Point Characterizations and Convergence Analysis of a Descent Algorithm for Nonsmooth Continuous Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 493-513, September.
    4. B. Japamala Rani & Krishna Kummari, 2023. "Duality for fractional interval-valued optimization problem via convexificator," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 481-500, March.
    5. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
    6. X. F. Li & J. Z. Zhang, 2006. "Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 429-452, December.
    7. M. Alavi Hejazi & N. Movahedian, 2020. "A New Abadie-Type Constraint Qualification for General Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 86-101, July.
    8. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.
    9. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    10. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    11. Do Luu, 2014. "Necessary and Sufficient Conditions for Efficiency Via Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 510-526, February.
    12. X. F. Li & J. Z. Zhang, 2010. "Existence and Boundedness of the Kuhn-Tucker Multipliers in Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 373-386, May.
    13. J. Dutta & S. Chandra, 2002. "Convexifactors, Generalized Convexity, and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 41-64, April.
    14. D.T. Luc & M.A. Noor, 2003. "Local Uniqueness of Solutions of General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 103-119, April.
    15. M. Alavi Hejazi & N. Movahedian & S. Nobakhtian, 2018. "On Constraint Qualifications and Sensitivity Analysis for General Optimization Problems via Pseudo-Jacobians," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 778-799, December.
    16. Felipe Lara & Alireza Kabgani, 2021. "On global subdifferentials with applications in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 81(4), pages 881-900, December.
    17. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    18. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    19. Yogendra Pandey & Shashi Kant Mishra, 2016. "Duality for Nonsmooth Optimization Problems with Equilibrium Constraints, Using Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 694-707, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    2. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    3. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    4. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    5. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.
    6. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    7. Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
    8. Y. Gao, 2004. "Representation of the Clarke Generalized Jacobian via the Quasidifferential," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 519-532, December.
    9. J. Chen & L. Qi, 2010. "Pseudotransient Continuation for Solving Systems of Nonsmooth Equations with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 223-242, November.
    10. Alain B. Zemkoho & Shenglong Zhou, 2021. "Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(2), pages 625-674, March.
    11. Shaohua Pan & Jein-Shan Chen & Sangho Kum & Yongdo Lim, 2011. "The penalized Fischer-Burmeister SOC complementarity function," Computational Optimization and Applications, Springer, vol. 49(3), pages 457-491, July.
    12. Kalandrakis, Tasos, 2015. "Computation of equilibrium values in the Baron and Ferejohn bargaining model," Games and Economic Behavior, Elsevier, vol. 94(C), pages 29-38.
    13. Chen Ling & Qin Ni & Liqun Qi & Soon-Yi Wu, 2010. "A new smoothing Newton-type algorithm for semi-infinite programming," Journal of Global Optimization, Springer, vol. 47(1), pages 133-159, May.
    14. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    15. Gerdts, Matthias, 2008. "A nonsmooth Newton’s method for control-state constrained optimal control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 925-936.
    16. Jingyong Tang & Jinchuan Zhou, 2020. "Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones," Annals of Operations Research, Springer, vol. 295(2), pages 787-808, December.
    17. Gonglin Yuan & Zengxin Wei & Zhongxing Wang, 2013. "Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization," Computational Optimization and Applications, Springer, vol. 54(1), pages 45-64, January.
    18. Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    19. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    20. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:101:y:1999:i:3:d:10.1023_a:1021790120780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.