IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v78y2020i1d10.1007_s10898-020-00906-y.html
   My bibliography  Save this article

On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm

Author

Listed:
  • Felipe Serrano

    (Zuse Institute Berlin)

  • Robert Schwarz

    (Zuse Institute Berlin)

  • Ambros Gleixner

    (Zuse Institute Berlin)

Abstract

Recently, Kronqvist et al. (J Global Optim 64(2):249–272, 2016) rediscovered the supporting hyperplane algorithm of Veinott (Oper Res 15(1):147–152, 1967) and demonstrated its computational benefits for solving convex mixed integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm (J Soc Ind Appl Math 8(4):703–712, 1960) applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by a class of general, not necessarily convex nor differentiable, functions.

Suggested Citation

  • Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
  • Handle: RePEc:spr:jglopt:v:78:y:2020:i:1:d:10.1007_s10898-020-00906-y
    DOI: 10.1007/s10898-020-00906-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00906-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00906-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
    2. Arthur F. Veinott, 1967. "The Supporting Hyperplane Method for Unimodal Programming," Operations Research, INFORMS, vol. 15(1), pages 147-152, February.
    3. Zhou Wei & M. Montaz Ali, 2015. "Outer Approximation Algorithm for One Class of Convex Mixed-Integer Nonlinear Programming Problems with Partial Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 644-652, November.
    4. Adil Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2014. "Introduction to Nonsmooth Optimization," Springer Books, Springer, edition 127, number 978-3-319-08114-4, December.
    5. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
    6. Hoang Tuy, 2016. "Convex Analysis and Global Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-31484-6, September.
    7. Zhou Wei & M. Ali, 2015. "Convex mixed integer nonlinear programming problems and an outer approximation algorithm," Journal of Global Optimization, Springer, vol. 63(2), pages 213-227, October.
    8. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    9. V. Jeyakumar & D. T. Luc, 1999. "Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 599-621, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
    2. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    3. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
    4. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    5. Zhou Wei & M. Montaz Ali & Liang Xu & Bo Zeng & Jen-Chih Yao, 2019. "On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 840-863, June.
    6. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    7. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
    8. Felipe Lara & Alireza Kabgani, 2021. "On global subdifferentials with applications in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 81(4), pages 881-900, December.
    9. Do Luu & Tran Thi Mai, 2018. "Optimality and duality in constrained interval-valued optimization," 4OR, Springer, vol. 16(3), pages 311-337, September.
    10. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    11. Jia-Jiang Lin & Feng Xu & Xiong-Lin Luo, 2023. "Nonconvex sensitivity-based generalized Benders decomposition," Journal of Global Optimization, Springer, vol. 86(1), pages 37-60, May.
    12. X. F. Li & J. Z. Zhang, 2006. "Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 429-452, December.
    13. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.
    14. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    15. Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
    16. X. F. Li & J. Z. Zhang, 2010. "Existence and Boundedness of the Kuhn-Tucker Multipliers in Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 373-386, May.
    17. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.
    18. D.T. Luc & M.A. Noor, 2003. "Local Uniqueness of Solutions of General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 103-119, April.
    19. E. Allevi & J. E. Martínez-Legaz & R. Riccardi, 2020. "Optimality conditions for convex problems on intersections of non necessarily convex sets," Journal of Global Optimization, Springer, vol. 77(1), pages 143-155, May.
    20. Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:78:y:2020:i:1:d:10.1007_s10898-020-00906-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.