Forecasting number of births and sex ratio at birth in Iran using deep neural network and ARIMA: implications for policy evaluations
Author
Abstract
Suggested Citation
DOI: 10.1007/s12546-024-09348-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
- Andrea Nigri & Susanna Levantesi & Jose Manuel Aburto, 2022. "Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(8), pages 199-232.
- Xiaoyun Xie & Ming Xie & Ata Jahangir Moshayedi & Mohammad Hadi Noori Skandari & Zuowei Cai, 2022. "A Hybrid Improved Neural Networks Algorithm Based on L2 and Dropout Regularization," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-19, November.
- Zhen Zhang & Qiang Li, 2020. "Population aging caused by a rise in the sex ratio at birth," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(32), pages 969-992.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Raftery, Adrian E. & Ševčíková, Hana, 2023. "Probabilistic population forecasting: Short to very long-term," International Journal of Forecasting, Elsevier, vol. 39(1), pages 73-97.
- Zhongwei Zhao & Yuan Zhu & Anna Reimondos, 2013. "Could changes in reported sex ratios at birth during China's 1958-1961 famine support the adaptive sex ratio adjustment hypothesis?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(33), pages 885-906.
- Tom Wilson & Martin Bell, 2004. "Australia's uncertain demographic future," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 11(8), pages 195-234.
- Peter McDonald & Meimanat Hosseini-Chavoshi & Mohammad Jalal Abbasi Shavazi & Arash Rashidian, 2015. "An assessment of recent Iranian fertility trends using parity progression ratios," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 32(58), pages 1581-1602.
- Ridhi Kashyap & Francisco Villavicencio, 2016. "The Dynamics of Son Preference, Technology Diffusion, and Fertility Decline Underlying Distorted Sex Ratios at Birth: A Simulation Approach," Demography, Springer;Population Association of America (PAA), vol. 53(5), pages 1261-1281, October.
- Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
- Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
- Hyndman, Rob J. & Booth, Heather, 2008.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
- Rob J Hyndman & Heather Booth, 2006. "Stochastic population forecasts using functional data models for mortality, fertility and migration," Monash Econometrics and Business Statistics Working Papers 14/06, Monash University, Department of Econometrics and Business Statistics.
- Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
- Gianni Corsetti & Marco Marsili, 2013. "Previsioni stocastiche della popolazione nell’ottica di un Istituto Nazionale di Statistica," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(2-3), pages 5-29.
- Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Daniel Buncic, 2012.
"Understanding forecast failure of ESTAR models of real exchange rates,"
Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
- Daniel Buncic, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," EERI Research Paper Series EERI_RP_2009_18, Economics and Econometrics Research Institute (EERI), Brussels.
- Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
- Buncic, Daniel, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," MPRA Paper 16526, University Library of Munich, Germany.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
- Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011.
"Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816.
- Sara Tafuro, 2020. "An Economic Framework for Persisting Son Preference: Rethinking the Role of Intergenerational Support," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 39(6), pages 983-1007, December.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Alho, Juha, 2008. "Aggregation across countries in stochastic population forecasts," International Journal of Forecasting, Elsevier, vol. 24(3), pages 343-353.
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
- Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
- Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
More about this item
Keywords
Pronatalist policy; Birth rate; ARIMA modelling; Deep neural network modelling; Iran;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joprea:v:41:y:2024:i:4:d:10.1007_s12546-024-09348-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.