IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i4d10.1007_s10845-024-02345-y.html
   My bibliography  Save this article

Automatic high-frequency induction brazing through an ensembled detection with heterogenous sensor measurements

Author

Listed:
  • Joonhyeok Moon

    (Hanyang University)

  • Min-Gwan Kim

    (Hanyang University)

  • Ok Hyun Kang

    (LG Electronics)

  • Heejong Lee

    (LG Electronics)

  • Ki-Yong Oh

    (Hanyang University
    Hanyang University)

Abstract

This study proposes a new method to estimate the state of the high-frequency induction brazing by using the ensembled Rotational multi-pyramid-transformer tiny (RoMP-T2). The proposed method aims to identify the exact state of an induction brazing process because this information is effective to develop an automatic control system of an induction brazing machine. The proposed state estimation method features three characteristics. First, the method addresses a novel neural network for object detection titled the RoMP-T2. This neural network includes a rotational bounding box, multilevel and multiscale feature extraction module, and pyramid vision transformer, which effectively extract features highly correlated to an inducing brazing process from images. Second, the ensembled architecture of the RoMP-T2 is addressed to extract features from both optical and thermal images. Bayesian optimization was also addressed to optimize hyperparameters in the ensembled architecture of the RoMP-T2. Hence, the ensembled RoMP-T2 compensates features extracted from each optical and thermal images, accurately detecting an exact state and location of the filler material during an induction brazing process. Third, the proposed method addresses a cumulative alarm (CA) for determining the completion of the brazing process. The CA significantly reduces a false alarm rate, securing high safety and reliability when the proposed method is implemented to an automation process of the high-frequency induction brazing. An analysis on experiments with optical and thermal images reveals that the ensembled architecture secures the highest accuracy by compensating a limit of feature extraction from each optical and thermal image. The quantitative comparison of the RoMP-T2 with other base-line neural networks confirms that the proposed neural network outperforms other neutral networks in both accuracy and robustness perspectives. Furthermore, systematic analysis on experiments reveals that the CA significantly decreases a false alarm rate and thereby increases productivity. These experimental evidences confirm that the proposed framework would be effective to develop an active management system of an induction brazing process, which would be indispensable for manufacturing process automation in a smart factory.

Suggested Citation

  • Joonhyeok Moon & Min-Gwan Kim & Ok Hyun Kang & Heejong Lee & Ki-Yong Oh, 2025. "Automatic high-frequency induction brazing through an ensembled detection with heterogenous sensor measurements," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2439-2459, April.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02345-y
    DOI: 10.1007/s10845-024-02345-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02345-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02345-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fekri, Mohammad Navid & Patel, Harsh & Grolinger, Katarina & Sharma, Vinay, 2021. "Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    2. Türkoğlu, A. Selim & Erkmen, Burcu & Eren, Yavuz & Erdinç, Ozan & Küçükdemiral, İbrahim, 2024. "Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application," Applied Energy, Elsevier, vol. 360(C).
    3. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    4. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    5. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    6. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    7. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    8. Zhang, Jialun & Peng, Jimmy Chih-Hsien & Hug, Gabriela, 2024. "Wireless AMI planning for guaranteed observability of medium voltage distribution grid," Applied Energy, Elsevier, vol. 370(C).
    9. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.
    10. Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
    11. Fachrizal Aksan & Vishnu Suresh & Przemysław Janik & Tomasz Sikorski, 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models," Energies, MDPI, vol. 16(14), pages 1-24, July.
    12. Yousaf Murtaza Rind & Muhammad Haseeb Raza & Muhammad Zubair & Muhammad Qasim Mehmood & Yehia Massoud, 2023. "Smart Energy Meters for Smart Grids, an Internet of Things Perspective," Energies, MDPI, vol. 16(4), pages 1-35, February.
    13. Vasileios Laitsos & Georgios Vontzos & Paschalis Paraschoudis & Eleftherios Tsampasis & Dimitrios Bargiotas & Lefteri H. Tsoukalas, 2024. "The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market," Energies, MDPI, vol. 17(22), pages 1-37, November.
    14. Ge Zhang & Songyang Zhu & Xiaoqing Bai, 2022. "Federated Learning-Based Multi-Energy Load Forecasting Method Using CNN-Attention-LSTM Model," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    15. Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
    16. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    17. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    18. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    19. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
    20. Chen, Siliang & Ge, Wei & Liang, Xinbin & Jin, Xinqiao & Du, Zhimin, 2024. "Lifelong learning with deep conditional generative replay for dynamic and adaptive modeling towards net zero emissions target in building energy system," Applied Energy, Elsevier, vol. 353(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02345-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.