IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i8d10.1007_s10845-021-01798-9.html
   My bibliography  Save this article

New metrics for measuring supply chain reconfigurability

Author

Listed:
  • Slim Zidi

    (University of Paris 8
    University of Picardie Jules Verne)

  • Nadia Hamani

    (University of Picardie Jules Verne)

  • Lyes Kermad

    (University of Paris 8)

Abstract

The COVID 19 pandemic, fluctuating demand, market uncertainty and the emergence of new technologies explain the need for a more flexible and agile supply chain. In fact, several important factors should be taken into account in the process of building an adaptive and reconfigurable supply chain. Reconfigurability is used to measure quantitatively the capability of supply chain to change easily their structure and functions. The aim of this work is to evaluate the level of reconfigurability of a supply chain. Quantitative measures of six indicators that characterize reconfigurability are presented in this paper. Then, an index of reconfigurability in supply chain is developed based on The Multi-Attribute Utility Theory in order to choose the most reconfigurable configuration. An illustrative example is also given. From the discussion, it is deduced that the characteristics of the reconfigurable supply chain impacts positively on the degree of reconfigurability.

Suggested Citation

  • Slim Zidi & Nadia Hamani & Lyes Kermad, 2022. "New metrics for measuring supply chain reconfigurability," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2371-2392, December.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01798-9
    DOI: 10.1007/s10845-021-01798-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01798-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01798-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pallab Biswas, 2017. "Modeling reconfigurability in supply chains using total interpretive structural modeling," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 14(2), pages 194-221, May.
    2. Ashutosh Gupta & Pramod K. Jain & Dinesh Kumar, 2015. "Configuration selection of reconfigurable manufacturing system based on performance," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 20(2), pages 209-230.
    3. Alessia Napoleone & Alessandro Pozzetti & Marco Macchi, 2018. "A framework to manage reconfigurability in manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 56(11), pages 3815-3837, June.
    4. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2020. "Reconfigurable supply chain: the X-network," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4138-4163, July.
    5. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    6. Caridi, Maria & Crippa, Luca & Perego, Alessandro & Sianesi, Andrea & Tumino, Angela, 2010. "Do virtuality and complexity affect supply chain visibility?," International Journal of Production Economics, Elsevier, vol. 127(2), pages 372-383, October.
    7. Graman, Gregory A., 2010. "A partial-postponement decision cost model," European Journal of Operational Research, Elsevier, vol. 201(1), pages 34-44, February.
    8. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    9. Claire Palmer & Esmond N. Urwin & Ali Niknejad & Dobrila Petrovic & Keith Popplewell & Robert I. M. Young, 2018. "An ontology supported risk assessment approach for the intelligent configuration of supply networks," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1005-1030, June.
    10. Nima Hamta & M. Akbarpour Shirazi & Sara Behdad & S.M.T. Fatemi Ghomi, 2018. "Modeling and measuring the structural complexity in assembly supply chain networks," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 259-275, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lydia Novoszel & Tina Wakolbinger, 2022. "Meta-analysis of Supply Chain Disruption Research," SN Operations Research Forum, Springer, vol. 3(1), pages 1-25, March.
    2. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    3. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    4. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    5. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    6. Alessia Napoleone & Alessandro Bruzzone & Ann-Louise Andersen & Thomas Ditlev Brunoe, 2022. "Fostering the Reuse of Manufacturing Resources for Resilient and Sustainable Supply Chains," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    7. Weili Yin & Wenxue Ran, 2023. "Explaining Firm Performance During the COVID-19 With fsQCA: The Role of Supply Network Complexity, Inventory Turns, and Geographic Dispersion," SAGE Open, , vol. 13(2), pages 21582440231, June.
    8. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Vimal K.E.K & Simon Peter Nadeem & Mahadharsan Ravichandran & Manavalan Ethirajan & Jayakrishna Kandasamy, 2022. "Resilience strategies to recover from the cascading ripple effect in a copper supply chain through project management," Operations Management Research, Springer, vol. 15(1), pages 440-460, June.
    10. João Pires Ribeiro & Ana Paula F. D. Barbosa-Póvoa, 2023. "A responsiveness metric for the design and planning of resilient supply chains," Annals of Operations Research, Springer, vol. 324(1), pages 1129-1181, May.
    11. Jessica Olivares-Aguila & Alejandro Vital-Soto, 2021. "Supply Chain Resilience Roadmaps for Major Disruptions," Logistics, MDPI, vol. 5(4), pages 1-18, November.
    12. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    13. Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
    14. Raktim Pal & Nezih Altay, 2023. "The missing link in disruption management research: coping," Operations Management Research, Springer, vol. 16(1), pages 433-449, March.
    15. Afraz, Muhammad Fawad & Bhatti, Sabeen Hussain & Ferraris, Alberto & Couturier, Jerome, 2021. "The impact of supply chain innovation on competitive advantage in the construction industry: Evidence from a moderated multi-mediation model," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    16. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    17. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    18. Cecil Ash & Uday Venkatadri & Claver Diallo & Peter Vanberkel & Ahmed Saif, 2023. "PPE Supply Optimization Under Risks of Disruption from the COVID-19 Pandemic," SN Operations Research Forum, Springer, vol. 4(2), pages 1-29, June.
    19. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    20. Fattahi, Mohammad & Govindan, Kannan & Maihami, Reza, 2020. "Stochastic optimization of disruption-driven supply chain network design with a new resilience metric," International Journal of Production Economics, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01798-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.