IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i8d10.1007_s10845-021-01775-2.html
   My bibliography  Save this article

Failure prediction in production line based on federated learning: an empirical study

Author

Listed:
  • Ning Ge

    (Beihang University
    Ministry of Industry and Information Technology)

  • Guanghao Li

    (Beihang University)

  • Li Zhang

    (Beihang University)

  • Yi Liu

    (Beihang University)

Abstract

Data protection across organizations is limiting the application of centralized learning (CL) techniques. Federated learning (FL) enables multiple participants to build a learning model without sharing data. Nevertheless, there is very few research works on FL in intelligent manufacturing. This paper presents the results of an empirical study on failure prediction in the production line based on FL. This paper (1) designs Federated Support Vector Machine and federated random forest algorithms for the horizontal FL and vertical FL scenarios, respectively; (2) proposes an experiment process for evaluating the effectiveness between the FL and CL algorithms; (3) finds that the performance of FL and CL are not significantly different on the global testing data, on the random partial testing data, and on the estimated unknown Bosch data, respectively. The fact that the testing data is heterogeneous enhances our findings. Our study reveals that FL can replace CL for failure prediction.

Suggested Citation

  • Ning Ge & Guanghao Li & Li Zhang & Yi Liu, 2022. "Failure prediction in production line based on federated learning: an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2277-2294, December.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01775-2
    DOI: 10.1007/s10845-021-01775-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01775-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01775-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.
    2. Toyotaro Suzumura & Yi Zhou & Natahalie Baracaldo & Guangnan Ye & Keith Houck & Ryo Kawahara & Ali Anwar & Lucia Larise Stavarache & Yuji Watanabe & Pablo Loyola & Daniel Klyashtorny & Heiko Ludwig & , 2019. "Towards Federated Graph Learning for Collaborative Financial Crimes Detection," Papers 1909.12946, arXiv.org, revised Oct 2019.
    3. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raúl Llasag Rosero & Catarina Silva & Bernardete Ribeiro & Bruno F. Santos, 2024. "Label synchronization for Hybrid Federated Learning in manufacturing and predictive maintenance," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4015-4034, December.
    2. Zhangyue Shi & Yuxuan Li & Chenang Liu, 2025. "Knowledge distillation-based information sharing for online process monitoring in decentralized manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2177-2192, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    2. Maximilian Zarte & Agnes Pechmann & Isabel L. Nunes, 2022. "Problems, Needs, and Challenges of a Sustainability-Based Production Planning," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    3. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    4. Wang, Di & He, Bin & Hu, Zhimu, 2024. "Financial technology and firm productivity: Evidence from Chinese listed enterprises," Finance Research Letters, Elsevier, vol. 63(C).
    5. Zhiyuan Fu & Ghulam Rasool Madni, 2024. "Unveiling the affecting mechanism of digital transformation on total factor productivity of Chinese firms," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-23, February.
    6. Wang, Linhui & Chen, Qi & Dong, Zhiqing & Cheng, Lu, 2024. "The role of industrial intelligence in peaking carbon emissions in China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    7. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
    8. Seon Han Choi & Byeong Soo Kim, 2025. "Intelligent factory layout design framework through collaboration between optimization, simulation, and digital twin," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1547-1561, March.
    9. Shiguang Li & Yixiang Tian, 2023. "How Does Digital Transformation Affect Total Factor Productivity: Firm-Level Evidence from China," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    10. Muhammad Hassan & Marcus Svadling & Niclas Björsell, 2024. "Experience from implementing digital twins for maintenance in industrial processes," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 875-884, February.
    11. Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.
    12. Jingbo Liu & Fan Jiang & Shinichi Tashiro & Shujun Chen & Manabu Tanaka, 2025. "A physics-informed and data-driven framework for robotic welding in manufacturing," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    13. Wei Fang & Lianyu Zheng, 2020. "Shop floor data-driven spatial–temporal verification for manual assembly planning," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1003-1018, April.
    14. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    15. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    16. Chaohong Na & Xue Chen & Xiaojun Li & Yuting Li & Xiaolan Wang, 2022. "Digital Transformation of Value Chains and CSR Performance," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    17. Mario Vozza & Joseph Polden & Giulio Mattera & Gianfranco Piscopo & Silvestro Vespoli & Luigi Nele, 2024. "Explaining the Anomaly Detection in Additive Manufacturing via Boosting Models and Frequency Analysis," Mathematics, MDPI, vol. 12(21), pages 1-17, October.
    18. Xifan Yao & Nanfeng Ma & Jianming Zhang & Kesai Wang & Erfu Yang & Maurizio Faccio, 2024. "Enhancing wisdom manufacturing as industrial metaverse for industry and society 5.0," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 235-255, January.
    19. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    20. Ho, G.T.S. & Tang, Yuk Ming & Leung, Eric K.H. & Tong, P.H., 2025. "Integrated reinforcement learning of automated guided vehicles dynamic path planning for smart logistics and operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01775-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.