Author
Listed:
- Jingbo Liu
(Beijing University of Technology
Osaka University)
- Fan Jiang
(Beijing University of Technology
Qilu University of Technology (Shandong Academy of Sciences))
- Shinichi Tashiro
(Osaka University)
- Shujun Chen
(Beijing University of Technology)
- Manabu Tanaka
(Osaka University)
Abstract
The development of artificial intelligence (AI)-based industrial data-driven models is the driving force behind the digital transformation of manufacturing processes and the application of smart manufacturing. However, in real-world industrial applications, the intricate interplay among data quality, model accuracy, and generalizability poses significant challenges, hindering the effective deployment and scalability of data-driven models in complex manufacturing environments. To address this challenge, this paper proposes a universal Physics-informed Hybrid Optimization framework for Efficient Neural Intelligence (PHOENIX) in manufacturing, demonstrating its applicability in robotic welding scenarios. This framework systematically integrates physical principles into its input, model structure, and dynamic optimization processes, enabling proactive, real-time detection and predictive of welding instability. It achieves an accuracy of up to 98% for predictions within the next 50 ms and maintains an accuracy of 86% even for forecasts up to 1 s in advance. Through physics-informed data-driven modeling, the framework significantly reduces the dependence on high-cost data while maintaining the performance of the original model. By leveraging cloud-based optimization modules that integrate new data with historical experience, the framework enables autonomous model parameter optimization, ensuring its continuous adaptation to the complex and dynamic demands of industrial scenarios.
Suggested Citation
Jingbo Liu & Fan Jiang & Shinichi Tashiro & Shujun Chen & Manabu Tanaka, 2025.
"A physics-informed and data-driven framework for robotic welding in manufacturing,"
Nature Communications, Nature, vol. 16(1), pages 1-18, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60164-y
DOI: 10.1038/s41467-025-60164-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60164-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.