IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v29y2023i2d10.1007_s10732-023-09510-1.html
   My bibliography  Save this article

A hybrid heuristic algorithm for urban distribution with simultaneous pickup-delivery and time window

Author

Listed:
  • Fagui Liu

    (South China University of Technology)

  • Lvshengbiao Wang

    (South China University of Technology)

  • Mengke Gui

    (South China University of Technology)

  • Yang Zhang

    (South China University of Technology)

  • Yulin Lan

    (South China University of Technology)

  • Chengqi Lai

    (South China University of Technology)

  • Boyuan Zhu

    (South China University of Technology)

Abstract

With the continuous development of urban distribution services, customers have increasingly strict requirements for the delivery time windows. Therefore it is necessary to study the vehicle routing problem with simultaneous pickup-delivery and time windows (VRPSPDTW) in urban distribution. However, as one of the most important classification of the much anticipated reverse logistics, the VRPSPDTW problem has not received much attention, and lacks an efficient and simple implementation. Our method combines the enhanced Late Acceptance Hill Climbing algorithm (enhanced LAHC) to ensure the diversity of solutions and the Multi-armed Bandit Algorithm (MAB) to choose a neighborhood structure which has the best performance. In order to enhance its search ability at a later stage, a perturbation strategy is designed to effectively prevent premature convergence. To our best knowledge, the proposed h_LAHC (hybrid LAHC) algorithm is applied to the VRPSPDTW for the first time. We provide abundant experiments were conducted on 93 benchmark instances, and the results demonstrated that our algorithm can achieve better, totally equal or approximately equal results in 97.85%, 56.99% and 73.12% instances compared with the latest three mainstream algorithms respectively. In particular, the proposed algorithm has a prominent performance in scenarios with relatively narrow time windows. Moreover, we conduct an empirical analysis on critical components of the algorithm to highlight their impact on the performance of the proposed algorithm.

Suggested Citation

  • Fagui Liu & Lvshengbiao Wang & Mengke Gui & Yang Zhang & Yulin Lan & Chengqi Lai & Boyuan Zhu, 2023. "A hybrid heuristic algorithm for urban distribution with simultaneous pickup-delivery and time window," Journal of Heuristics, Springer, vol. 29(2), pages 269-311, June.
  • Handle: RePEc:spr:joheur:v:29:y:2023:i:2:d:10.1007_s10732-023-09510-1
    DOI: 10.1007/s10732-023-09510-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-023-09510-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-023-09510-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goetschalckx, Marc & Jacobs-Blecha, Charlotte, 1989. "The vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 42(1), pages 39-51, September.
    2. Kalayci, Can B. & Kulak, Osman & Günther, Hans-Otto, 2015. "A perturbation based variable neighborhood search heuristic for solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery with Time LimitAuthor-Name: Polat, Olcay," European Journal of Operational Research, Elsevier, vol. 242(2), pages 369-382.
    3. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    4. J Crispim & J Brandão, 2005. "Metaheuristics applied to mixed and simultaneous extensions of vehicle routing problems with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1296-1302, November.
    5. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    6. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    7. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2007. "An exact algorithm for a single-vehicle routing problem with time windows and multiple routes," European Journal of Operational Research, Elsevier, vol. 178(3), pages 755-766, May.
    8. N A Wassan, 2006. "A reactive tabu search for the vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 111-116, January.
    9. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    10. Olacir R. Castro & Gian Mauricio Fritsche & Aurora Pozo, 2018. "Evaluating selection methods on hyper-heuristic multi-objective particle swarm optimization," Journal of Heuristics, Springer, vol. 24(4), pages 581-616, August.
    11. Burke, Edmund K. & Bykov, Yuri, 2017. "The late acceptance Hill-Climbing heuristic," European Journal of Operational Research, Elsevier, vol. 258(1), pages 70-78.
    12. Maria Battarra & Güneş Erdoğan & Daniele Vigo, 2014. "Exact Algorithms for the Clustered Vehicle Routing Problem," Operations Research, INFORMS, vol. 62(1), pages 58-71, February.
    13. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    2. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2018. "A hybrid algorithm for the vehicle routing problem with backhauls, time windows and three-dimensional loading constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1029-1075, October.
    3. Mohsen Emadikhiav & David Bergman & Robert Day, 2020. "Consistent Routing and Scheduling with Simultaneous Pickups and Deliveries," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1937-1955, August.
    4. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    5. N Wassan, 2007. "Reactive tabu adaptive memory programming search for the vehicle routing problem with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1630-1641, December.
    6. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2017. "A hybrid solution approach for the 3L-VRP with simultaneous delivery and pickups," FEMM Working Papers 170005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    8. Zhou, Jian & Li, Hui & Gu, Yujie & Zhao, Mingxuan & Xie, Xuehui & Zheng, Haoran & Fang, Xinghua, 2021. "A novel two-phase approach for the bi-objective simultaneous delivery and pickup problem with fuzzy pickup demands," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    10. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    11. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    12. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    13. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    14. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    15. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Tomáš Režnar & Jan Martinovič & Kateřina Slaninová & Ekaterina Grakova & Vít Vondrák, 2017. "Probabilistic time-dependent vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 545-560, September.
    17. Paul Buijs & Jose Alejandro Lopez Alvarez & Marjolein Veenstra & Kees Jan Roodbergen, 2016. "Improved Collaborative Transport Planning at Dutch Logistics Service Provider Fritom," Interfaces, INFORMS, vol. 46(2), pages 119-132, April.
    18. Henriette Koch & Maximilian Schlögell & Andreas Bortfeldt, 2020. "A hybrid algorithm for the vehicle routing problem with three-dimensional loading constraints and mixed backhauls," Journal of Scheduling, Springer, vol. 23(1), pages 71-93, February.
    19. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    20. You, Jintao & Wang, Yuan & Xue, Zhaojie, 2023. "An exact algorithm for the multi-trip container drayage problem with truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:29:y:2023:i:2:d:10.1007_s10732-023-09510-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.