IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v24y2018i2d10.1007_s10732-017-9360-y.html
   My bibliography  Save this article

A Multi-start Algorithm with Intelligent Neighborhood Selection for solving multi-objective humanitarian vehicle routing problems

Author

Listed:
  • J. Molina

    (Universidad de Málaga)

  • A. D. López-Sánchez

    (Universidad de Málaga)

  • A. G. Hernández-Díaz

    (Universidad de Málaga)

  • I. Martínez-Salazar

    (Universidad de Málaga)

Abstract

In this paper, a problem based on real-world situations in humanitarian logistics is considered, where the main characteristics are the lack of available vehicles and the imperative need of a quick evacuation of all the affected by a disaster, but within the minimum possible travel cost. These aspects will be considered within a Multi-objective Capacitated Vehicle Routing Problem with Multiple Trips, where the objectives under consideration are: minimization of the number of vehicles, of the total travel cost and of the maximum latency. We consider, in this situation, maximum latency to be more relevant than classic latency criteria since reduction of the waiting time of the last affected is crucial for survival when any disaster strikes. For the purpose of producing high-quality solutions, a Multi-start Algorithm with Intelligent Neighborhood Selection is specifically designed and then compared with one of the most competitive reference in the literature, NSGA-II, to prove its superiority.

Suggested Citation

  • J. Molina & A. D. López-Sánchez & A. G. Hernández-Díaz & I. Martínez-Salazar, 2018. "A Multi-start Algorithm with Intelligent Neighborhood Selection for solving multi-objective humanitarian vehicle routing problems," Journal of Heuristics, Springer, vol. 24(2), pages 111-133, April.
  • Handle: RePEc:spr:joheur:v:24:y:2018:i:2:d:10.1007_s10732-017-9360-y
    DOI: 10.1007/s10732-017-9360-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-017-9360-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-017-9360-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 1994. "Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees," Operations Research, INFORMS, vol. 42(4), pages 626-642, August.
    2. Iris Martínez-Salazar & Francisco Angel-Bello & Ada Alvarez, 2015. "A customer-centric routing problem with multiple trips of a single vehicle," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1312-1323, August.
    3. Julian Molina & Manuel Laguna & Rafael Martí & Rafael Caballero, 2007. "SSPMO: A Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 91-100, February.
    4. Begoña Vitoriano & M. Ortuño & Gregorio Tirado & Javier Montero, 2011. "A multi-criteria optimization model for humanitarian aid distribution," Journal of Global Optimization, Springer, vol. 51(2), pages 189-208, October.
    5. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    6. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    7. de la Torre, Luis E. & Dolinskaya, Irina S. & Smilowitz, Karen R., 2012. "Disaster relief routing: Integrating research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 88-97.
    8. Huang, Michael & Smilowitz, Karen & Balcik, Burcu, 2012. "Models for relief routing: Equity, efficiency and efficacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 2-18.
    9. Rivera, Juan Carlos & Murat Afsar, H. & Prins, Christian, 2016. "Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 249(1), pages 93-104.
    10. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    11. Brandao, Jose & Mercer, Alan, 1997. "A tabu search algorithm for the multi-trip vehicle routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 180-191, July.
    12. Aristide Mingozzi & Roberto Roberti & Paolo Toth, 2013. "An Exact Algorithm for the Multitrip Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 193-207, May.
    13. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    14. López-Sánchez, A.D. & Hernández-Díaz, A.G. & Vigo, D. & Caballero, R. & Molina, J., 2014. "A multi-start algorithm for a balanced real-world Open Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 104-113.
    15. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    16. Macedo, Rita & Alves, Cláudio & Valério de Carvalho, J.M. & Clautiaux, François & Hanafi, Saïd, 2011. "Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model," European Journal of Operational Research, Elsevier, vol. 214(3), pages 536-545, November.
    17. Cattaruzza, Diego & Absi, Nabil & Feillet, Dominique & Vidal, Thibaut, 2014. "A memetic algorithm for the Multi Trip Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 833-848.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. A. Arellano-Arriaga & J. Molina & S. E. Schaeffer & A. M. Álvarez-Socarrás & I. A. Martínez-Salazar, 2019. "A bi-objective study of the minimum latency problem," Journal of Heuristics, Springer, vol. 25(3), pages 431-454, June.
    2. Maliheh Khorsi & Seyed Kamal Chaharsooghi & Ali Husseinzadeh Kashan & Ali Bozorgi-Amiri, 2022. "Solving the humanitarian multi-trip cumulative capacitated routing problem via a grouping metaheuristic algorithm," Annals of Operations Research, Springer, vol. 319(1), pages 173-210, December.
    3. Jie Zhang & Yifan Zhu & Xiaobo Li & Mengjun Ming & Weiping Wang & Tao Wang, 2022. "Multi-Trip Time-Dependent Vehicle Routing Problem with Split Delivery," Mathematics, MDPI, vol. 10(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    2. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    3. Maliheh Khorsi & Seyed Kamal Chaharsooghi & Ali Husseinzadeh Kashan & Ali Bozorgi-Amiri, 2022. "Solving the humanitarian multi-trip cumulative capacitated routing problem via a grouping metaheuristic algorithm," Annals of Operations Research, Springer, vol. 319(1), pages 173-210, December.
    4. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    5. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    6. Zhang, Zhenzhen & Liu, Mengyang & Lim, Andrew, 2015. "A memetic algorithm for the patient transportation problem," Omega, Elsevier, vol. 54(C), pages 60-71.
    7. Sze, Jeeu Fong & Salhi, Said & Wassan, Niaz, 2017. "The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 162-184.
    8. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    9. Pan, Binbin & Zhang, Zhenzhen & Lim, Andrew, 2021. "Multi-trip time-dependent vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 291(1), pages 218-231.
    10. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    11. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    12. Huang, Nan & Li, Jiliu & Zhu, Wenbin & Qin, Hu, 2021. "The multi-trip vehicle routing problem with time windows and unloading queue at depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    13. Ali Ekici & Okan Örsan Özener, 2020. "Inventory routing for the last mile delivery of humanitarian relief supplies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 621-660, September.
    14. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    15. Côté, Jean-François & Alves de Queiroz, Thiago & Gallesi, Francesco & Iori, Manuel, 2023. "A branch-and-regret algorithm for the same-day delivery problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    16. Gralla, Erica & Goentzel, Jarrod, 2018. "Humanitarian transportation planning: Evaluation of practice-based heuristics and recommendations for improvement," European Journal of Operational Research, Elsevier, vol. 269(2), pages 436-450.
    17. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    18. François, Véronique & Arda, Yasemin & Crama, Yves & Laporte, Gilbert, 2016. "Large neighborhood search for multi-trip vehicle routing," European Journal of Operational Research, Elsevier, vol. 255(2), pages 422-441.
    19. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    20. Liu, Shixin & Qin, Shujin & Zhang, Ruiyou, 2018. "A branch-and-price algorithm for the multi-trip multi-repairman problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 25-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:24:y:2018:i:2:d:10.1007_s10732-017-9360-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.