IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v53y2024i4d10.1007_s00182-023-00850-7.html
   My bibliography  Save this article

Impartial games with decreasing Sprague–Grundy function and their hypergraph compound

Author

Listed:
  • Endre Boros

    (Rutgers University)

  • Vladimir Gurvich

    (National Research University Higher School of Economics)

  • Nhan Bao Ho

    (La Trobe University)

  • Kazuhisa Makino

    (Kyoto University)

  • Peter Mursic

    (Rutgers University)

Abstract

The Sprague–Grundy (SG) theory reduces the disjunctive compound of impartial games to the classical game of NIM. We generalize this concept by introducing hypergraph compounds of impartial games. An impartial game is called SG-decreasing if its SG value is decreased by every move. Extending the SG theory, we reduce hypergraph compounds of SG-decreasing games to hypergraph compounds of single-pile NIM games. We show that this reduction works only if all games involved in the compound are SG-decreasing. A hypergraph is called SG-decreasing if the corresponding hypergraph compound of single-pile NIM games is an SG-decreasing game. We provide some necessary and some sufficient conditions for a hypergraph to be SG-decreasing. In particular, for hypergraphs with hyperedges of size at most 3 we obtain a necessary and sufficient condition verifiable in polynomial time.

Suggested Citation

  • Endre Boros & Vladimir Gurvich & Nhan Bao Ho & Kazuhisa Makino & Peter Mursic, 2024. "Impartial games with decreasing Sprague–Grundy function and their hypergraph compound," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(4), pages 1119-1144, December.
  • Handle: RePEc:spr:jogath:v:53:y:2024:i:4:d:10.1007_s00182-023-00850-7
    DOI: 10.1007/s00182-023-00850-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-023-00850-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-023-00850-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    2. Endre Boros & Vladimir Gurvich & Nhan Bao Ho & Kazuhisa Makino, 2021. "On the Sprague–Grundy function of extensions of proper Nim," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(3), pages 635-654, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
    2. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
    3. Gérard Cornuéjols & Milind Dawande, 1999. "A Class of Hard Small 0-1 Programs," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 205-210, May.
    4. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    5. Li, Weidong & Ou, Jinwen, 2024. "Machine scheduling with restricted rejection: An Application to task offloading in cloud–edge collaborative computing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 912-919.
    6. Klaus Jansen & Roberto Solis-Oba, 2011. "A Polynomial Time OPT + 1 Algorithm for the Cutting Stock Problem with a Constant Number of Object Lengths," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 743-753, November.
    7. Xueling Zhong & Jinwen Ou, 2017. "Improved approximation algorithms for parallel machine scheduling with release dates and job rejection," 4OR, Springer, vol. 15(4), pages 387-406, December.
    8. Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
    9. Elizabeth Baldwin & Paul Klemperer, 2019. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities," Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
    10. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    11. Jaykrishnan, G. & Levin, Asaf, 2024. "Scheduling with cardinality dependent unavailability periods," European Journal of Operational Research, Elsevier, vol. 316(2), pages 443-458.
    12. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    13. Freixas, Josep & Kurz, Sascha, 2014. "On minimum integer representations of weighted games," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 9-22.
    14. Karen Aardal & Frederik von Heymann, 2014. "On the Structure of Reduced Kernel Lattice Bases," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 823-840, August.
    15. Kenneth J. Arrow & Timothy J. Kehoe, 1994. "Distinguished Fellow: Herbert Scarf's Contributions to Economics," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 161-181, Fall.
    16. Niclas Boehmer & Edith Elkind, 2020. "Stable Roommate Problem with Diversity Preferences," Papers 2004.14640, arXiv.org.
    17. Kubale, Marek, 1996. "Preemptive versus nonpreemptive scheduling of biprocessor tasks on dedicated processors," European Journal of Operational Research, Elsevier, vol. 94(2), pages 242-251, October.
    18. Konstantin Gorbunov & Vassily Lyubetsky, 2020. "Linear Time Additively Exact Algorithm for Transformation of Chain-Cycle Graphs for Arbitrary Costs of Deletions and Insertions," Mathematics, MDPI, vol. 8(11), pages 1-30, November.
    19. Nathan Adelgren & Pietro Belotti & Akshay Gupte, 2018. "Efficient Storage of Pareto Points in Biobjective Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 324-338, May.
    20. Matthias Bentert & Robert Bredereck & Péter Györgyi & Andrzej Kaczmarczyk & Rolf Niedermeier, 2023. "A multivariate complexity analysis of the material consumption scheduling problem," Journal of Scheduling, Springer, vol. 26(4), pages 369-382, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:53:y:2024:i:4:d:10.1007_s00182-023-00850-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.