IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v53y2024i4d10.1007_s00182-023-00850-7.html
   My bibliography  Save this article

Impartial games with decreasing Sprague–Grundy function and their hypergraph compound

Author

Listed:
  • Endre Boros

    (Rutgers University)

  • Vladimir Gurvich

    (National Research University Higher School of Economics)

  • Nhan Bao Ho

    (La Trobe University)

  • Kazuhisa Makino

    (Kyoto University)

  • Peter Mursic

    (Rutgers University)

Abstract

The Sprague–Grundy (SG) theory reduces the disjunctive compound of impartial games to the classical game of NIM. We generalize this concept by introducing hypergraph compounds of impartial games. An impartial game is called SG-decreasing if its SG value is decreased by every move. Extending the SG theory, we reduce hypergraph compounds of SG-decreasing games to hypergraph compounds of single-pile NIM games. We show that this reduction works only if all games involved in the compound are SG-decreasing. A hypergraph is called SG-decreasing if the corresponding hypergraph compound of single-pile NIM games is an SG-decreasing game. We provide some necessary and some sufficient conditions for a hypergraph to be SG-decreasing. In particular, for hypergraphs with hyperedges of size at most 3 we obtain a necessary and sufficient condition verifiable in polynomial time.

Suggested Citation

  • Endre Boros & Vladimir Gurvich & Nhan Bao Ho & Kazuhisa Makino & Peter Mursic, 2024. "Impartial games with decreasing Sprague–Grundy function and their hypergraph compound," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(4), pages 1119-1144, December.
  • Handle: RePEc:spr:jogath:v:53:y:2024:i:4:d:10.1007_s00182-023-00850-7
    DOI: 10.1007/s00182-023-00850-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-023-00850-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-023-00850-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    2. Endre Boros & Vladimir Gurvich & Nhan Bao Ho & Kazuhisa Makino, 2021. "On the Sprague–Grundy function of extensions of proper Nim," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(3), pages 635-654, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
    2. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    3. Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
    4. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    5. Danny Nguyen & Igor Pak, 2020. "The Computational Complexity of Integer Programming with Alternations," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 191-204, February.
    6. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    7. Elizabeth Baldwin & Paul Klemperer, 2019. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities," Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
    8. Katrin Halbig & Lukas Hümbs & Florian Rösel & Lars Schewe & Dieter Weninger, 2024. "Computing Optimality Certificates for Convex Mixed-Integer Nonlinear Problems," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1579-1610, December.
    9. Herbert E. Scarf & David F. Shallcross, 2008. "The Frobenius Problem and Maximal Lattice Free Bodies," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 7, pages 149-153, Palgrave Macmillan.
    10. Elhedhli, Samir & Naoum-Sawaya, Joe, 2015. "Improved branching disjunctions for branch-and-bound: An analytic center approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 37-45.
    11. Mauro Dell’Amico & Simone Falavigna & Manuel Iori, 2015. "Optimization of a Real-World Auto-Carrier Transportation Problem," Transportation Science, INFORMS, vol. 49(2), pages 402-419, May.
    12. Danny Hermelin & Matthias Mnich & Simon Omlor, 2024. "Serial batching to minimize the weighted number of tardy jobs," Journal of Scheduling, Springer, vol. 27(6), pages 545-556, December.
    13. Karen Aardal & Cor A. J. Hurkens & Arjen K. Lenstra, 2000. "Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 427-442, August.
    14. Ariel D Procaccia & Michal Feldmany & Jeffrey S Rosenschein, 2007. "Approximability and Inapproximability of Dodgson and Young Elections," Levine's Bibliography 122247000000001616, UCLA Department of Economics.
    15. Klabjan, Diego, 2007. "Subadditive approaches in integer programming," European Journal of Operational Research, Elsevier, vol. 183(2), pages 525-545, December.
    16. Alexander Bockmayr & Friedrich Eisenbrand, 2001. "Cutting Planes and the Elementary Closure in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 304-312, May.
    17. Mingyang Gong & Guohui Lin & Eiji Miyano & Bing Su & Weitian Tong, 2024. "A polynomial-time approximation scheme for an arbitrary number of parallel identical multi-stage flow-shops," Annals of Operations Research, Springer, vol. 335(1), pages 185-204, April.
    18. Gérard Cornuéjols & Milind Dawande, 1999. "A Class of Hard Small 0-1 Programs," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 205-210, May.
    19. Li, Weidong & Ou, Jinwen, 2024. "Machine scheduling with restricted rejection: An Application to task offloading in cloud–edge collaborative computing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 912-919.
    20. Xueling Zhong & Jinwen Ou, 2017. "Improved approximation algorithms for parallel machine scheduling with release dates and job rejection," 4OR, Springer, vol. 15(4), pages 387-406, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:53:y:2024:i:4:d:10.1007_s00182-023-00850-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.