Enhancing Financial Risk Prediction Using TG-LSTM Model: An Innovative Approach with Applications to Public Health Emergencies
Author
Abstract
Suggested Citation
DOI: 10.1007/s13132-024-02081-x
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Heena Thanki & Sweety Shah & Vrajlal Sapovadia & Ankit D. Oza & Dumitru Doru Burduhos-Nergis, 2022. "Role of Gender in Predicting Determinant of Financial Risk Tolerance," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
- Liya Wang & Yaxun Dai & Renzhuo Wang & Yuwen Sun & Chunying Zhang & Zhiwei Yang & Yuqing Sun, 2022. "SEIARN: Intelligent Early Warning Model of Epidemic Spread Based on LSTM Trajectory Prediction," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
- Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
- Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
- Alexey Mikhaylov & Hasan Dinçer & Serhat Yüksel, 2023. "Analysis of financial development and open innovation oriented fintech potential for emerging economies using an integrated decision-making approach of MF-X-DMA and golden cut bipolar q-ROFSs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
- Horobet, Alexandra & Boubaker, Sabri & Belascu, Lucian & Negreanu, Cristina Carmencita & Dinca, Zeno, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
- Goel Himanshu & Agarwal Monika & Chhabra Meghna & Som Bhupender Kumar, 2023. "The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an Ann Model Approach: An Empirical Investigation Based on BSE Sensex," Folia Oeconomica Stetinensia, Sciendo, vol. 23(2), pages 116-131, December.
- Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
- Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
- Mingchen Li & Kun Yang & Wencan Lin & Yunjie Wei & Shouyang Wang, 2024. "An interval constraint-based trading strategy with social sentiment for the stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
- Masoud Rahiminezhad Galankashi & Farimah Mokhatab Rafiei & Maryam Ghezelbash, 2020. "Portfolio selection: a fuzzy-ANP approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-34, December.
- Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
- M. Mallikarjuna & R. Prabhakara Rao, 2019. "Evaluation of forecasting methods from selected stock market returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-16, December.
- Ryan Chipwanya, 2023. "Stock Market Directional Bias Prediction Using ML Algorithms," Papers 2310.16855, arXiv.org.
- Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
- Xie, Wen-Jie & Li, Mu-Yao & Zhou, Wei-Xing, 2021. "Learning representation of stock traders and immediate price impacts," Emerging Markets Review, Elsevier, vol. 48(C).
- Alexandra Horobet & Sabri Boubaker & Lucian Belascu & Cristina Carmencita Negreanu & Zeno Dinca, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Post-Print hal-04990283, HAL.
- Saad, Haythem, 2025. "Hybrid machine learning models for marketing business analytics: A selective review," OSF Preprints xtahd_v1, Center for Open Science.
- Waleed Soliman & Zhiyuan Chen & Colin Johnson & Sabrina Wong, 2025. "Improving ETF Prediction Through Sentiment Analysis: A DeepAR and FinBERT Approach With Controlled Seed Sampling," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 32(1), March.
- Nabanita Das & Bikash Sadhukhan & Rajdeep Ghosh & Satyajit Chakrabarti, 2024. "Developing Hybrid Deep Learning Models for Stock Price Prediction Using Enhanced Twitter Sentiment Score and Technical Indicators," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3407-3446, December.
- Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
- Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:16:y:2025:i:1:d:10.1007_s13132-024-02081-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.