IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v92y2025i1d10.1007_s10898-025-01464-x.html
   My bibliography  Save this article

Simultaneous convexification for the planar obnoxious facility location problem

Author

Listed:
  • Anatoliy Kuznetsov

    (Georgia Institute of Technology)

  • Nikolaos V. Sahinidis

    (Georgia Institute of Technology
    Georgia Institute of Technology)

Abstract

Nonconvex quadratically constrained optimization problems are known to be difficult to solve to global optimality and constitute a very active area of research. We identify a particularly challenging such problem arising from applications in planar obnoxious facility location. Even small instances of this problem are currently beyond the capabilities of modern global optimization solvers, owing to weak convex relaxations. We address this limitation by characterizing the simultaneous convex hull of the intersection of reverse convex reduced domains inherent in these problems. We derive tighter variable bounds and optimality-based cutting planes based on this simultaneous convexification method, along with an efficient algorithm to compute them. Given an optimal solution, our approach embedded within a spatial branch-and-bound scheme is able to certify global optimality two orders of magnitude faster compared to state-of-the-art general purpose global optimization solvers also initialized to the optimal solution. Even when provided with no starting point, it is competitive with global solvers initialized to the global solution. Using our method, global optimality is certified for the first time for 24 open instances from the literature. For three of these instances, we improve upon the previously best known solutions.

Suggested Citation

  • Anatoliy Kuznetsov & Nikolaos V. Sahinidis, 2025. "Simultaneous convexification for the planar obnoxious facility location problem," Journal of Global Optimization, Springer, vol. 92(1), pages 1-20, May.
  • Handle: RePEc:spr:jglopt:v:92:y:2025:i:1:d:10.1007_s10898-025-01464-x
    DOI: 10.1007/s10898-025-01464-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-025-01464-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-025-01464-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Falk & Karla R. Hoffman, 1976. "A Successive Underestimation Method for Concave Minimization Problems," Mathematics of Operations Research, INFORMS, vol. 1(3), pages 251-259, August.
    2. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    3. Alan T. Murray & Richard L. Church & Ross A. Gerrard & Wing‐Sing Tsui, 1998. "Impact Models For Siting Undesirable Facilities," Papers in Regional Science, Wiley Blackwell, vol. 77(1), pages 19-36, January.
    4. Frauke Liers & Alexander Martin & Maximilian Merkert & Nick Mertens & Dennis Michaels, 2021. "Solving mixed-integer nonlinear optimization problems using simultaneous convexification: a case study for gas networks," Journal of Global Optimization, Springer, vol. 80(2), pages 307-340, June.
    5. Marcia Fampa & Jon Lee, 2021. "Convexification of bilinear forms through non-symmetric lifting," Journal of Global Optimization, Springer, vol. 80(2), pages 287-305, June.
    6. Marco Locatelli, 2020. "Convex envelope of bivariate cubic functions over rectangular regions," Journal of Global Optimization, Springer, vol. 76(1), pages 1-24, January.
    7. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.
    8. Richard L. Church & Robert S. Garfinkel, 1978. "Locating an Obnoxious Facility on a Network," Transportation Science, INFORMS, vol. 12(2), pages 107-118, May.
    9. Marco Locatelli, 2018. "Convex envelopes of bivariate functions through the solution of KKT systems," Journal of Global Optimization, Springer, vol. 72(2), pages 277-303, October.
    10. Jinhak Kim & Mohit Tawarmalani & Jean-Philippe P. Richard, 2022. "Convexification of Permutation-Invariant Sets and an Application to Sparse Principal Component Analysis," Mathematics of Operations Research, INFORMS, vol. 47(4), pages 2547-2584, November.
    11. Alberto Pia & Jeff Linderoth & Haoran Zhu, 2024. "Relaxations and cutting planes for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 90(1), pages 27-51, September.
    12. Yi Zhang & Nikolaos V. Sahinidis & Carlos Nohra & Gang Rong, 2020. "Optimality-based domain reduction for inequality-constrained NLP and MINLP problems," Journal of Global Optimization, Springer, vol. 77(3), pages 425-454, July.
    13. Drezner, Zvi & Kalczynski, Pawel & Salhi, Said, 2019. "The planar multiple obnoxious facilities location problem: A Voronoi based heuristic," Omega, Elsevier, vol. 87(C), pages 105-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Kalczynski & Atsuo Suzuki & Zvi Drezner, 2023. "Obnoxious facility location in multiple dimensional space," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 331-354, July.
    2. Ksenia Bestuzheva & Antonia Chmiela & Benjamin Müller & Felipe Serrano & Stefan Vigerske & Fabian Wegscheider, 2025. "Global optimization of mixed-integer nonlinear programs with SCIP 8," Journal of Global Optimization, Springer, vol. 91(2), pages 287-310, February.
    3. Pelegrín, Mercedes & Xu, Liding, 2023. "Continuous covering on networks: Improved mixed integer programming formulations," Omega, Elsevier, vol. 117(C).
    4. Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    5. M. Locatelli, 2022. "Exact and approximate results for convex envelopes of special structured functions over simplices," Journal of Global Optimization, Springer, vol. 83(2), pages 201-220, June.
    6. Alçada-Almeida, Luís & Coutinho-Rodrigues, João & Current, John, 2009. "A multiobjective modeling approach to locating incinerators," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 111-120, June.
    7. Ralf Lenz & Felipe Serrano, 2022. "Tight Convex Relaxations for the Expansion Planning Problem," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 325-352, July.
    8. Andreas Löhne & Andrea Wagner, 2017. "Solving DC programs with a polyhedral component utilizing a multiple objective linear programming solver," Journal of Global Optimization, Springer, vol. 69(2), pages 369-385, October.
    9. Ankhili, Z. & Mansouri, A., 2009. "An exact penalty on bilevel programs with linear vector optimization lower level," European Journal of Operational Research, Elsevier, vol. 197(1), pages 36-41, August.
    10. Rainer Burkard & Jafar Fathali, 2007. "A polynomial method for the pos/neg weighted 3-median problem on a tree," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 229-238, April.
    11. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    12. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    13. Nimrod Megiddo, 1981. "The Maximum Coverage Location Problem," Discussion Papers 490, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    14. Zilong Feng & Tadashi Dohi & Won Young Yun, 2023. "System reliability analysis of a lamp problem by simulation," Journal of Risk and Reliability, , vol. 237(6), pages 1186-1198, December.
    15. Liying Yan & Manel Grifoll & Hongxiang Feng & Pengjun Zheng & Chunliang Zhou, 2022. "Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    16. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    17. Drezner, Tammy & Drezner, Zvi & Hulliger, Beat, 2014. "The Quintile Share Ratio in location analysis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 166-174.
    18. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    19. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    20. Harold P. Benson & S. Selcuk Erenguc, 1990. "An algorithm for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 515-525, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:92:y:2025:i:1:d:10.1007_s10898-025-01464-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.