IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i2d10.1007_s10898-024-01376-2.html
   My bibliography  Save this article

On the use of overlapping convex hull relaxations to solve nonconvex MINLPs

Author

Listed:
  • Ouyang Wu

    (HAW Hamburg)

  • Pavlo Muts

    (HAW Hamburg)

  • Ivo Nowak

    (HAW Hamburg)

  • Eligius M. T. Hendrix

    (Universidad de Málaga)

Abstract

We present a novel relaxation for general nonconvex sparse MINLP problems, called overlapping convex hull relaxation (CHR). It is defined by replacing all nonlinear constraint sets by their convex hulls. If the convex hulls are disjunctive, e.g. if the MINLP is block-separable, the CHR is equivalent to the convex hull relaxation obtained by (standard) column generation (CG). The CHR can be used for computing an initial lower bound in the root node of a branch-and-bound algorithm, or for computing a start vector for a local-search-based MINLP heuristic. We describe a dynamic block and column generation (DBCG) MINLP algorithm to generate the CHR by dynamically adding aggregated blocks. The idea of adding aggregated blocks in the CHR is similar to the well-known cutting plane approach. Numerical experiments on nonconvex MINLP instances show that the duality gap can be significantly reduced with the results of CHRs. DBCG is implemented as part of the CG-MINLP framework Decogo, see https://decogo.readthedocs.io/en/latest/index.html .

Suggested Citation

  • Ouyang Wu & Pavlo Muts & Ivo Nowak & Eligius M. T. Hendrix, 2025. "On the use of overlapping convex hull relaxations to solve nonconvex MINLPs," Journal of Global Optimization, Springer, vol. 91(2), pages 415-436, February.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:2:d:10.1007_s10898-024-01376-2
    DOI: 10.1007/s10898-024-01376-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01376-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01376-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    2. Pavlo Muts & Ivo Nowak & Eligius M. T. Hendrix, 2020. "The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming," Journal of Global Optimization, Springer, vol. 77(1), pages 75-96, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Murray & Timm Faulwasser & Veit Hagenmeyer & Mario E. Villanueva & Boris Houska, 2021. "Partially distributed outer approximation," Journal of Global Optimization, Springer, vol. 80(3), pages 523-550, July.
    2. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.
    3. Ethem Çanakoğlu & İbrahim Muter & Tevfik Aytekin, 2021. "Integrating Individual and Aggregate Diversity in Top- N Recommendation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 300-318, January.
    4. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    5. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    6. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.
    7. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    8. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    9. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    10. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    11. Ternoy, Jacques Emmanuel, 1969. "Cooperation and economic efficiency," ISU General Staff Papers 196901010800004786, Iowa State University, Department of Economics.
    12. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    13. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    14. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    15. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    16. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    17. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    18. Ashwin Arulselvan & Mohsen Rezapour, 2017. "Exact Approaches for Designing Multifacility Buy-at-Bulk Networks," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 597-611, November.
    19. Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
    20. Prawat Sahakij & Steven Gabriel & Mark Ramirez & Chris Peot, 2011. "Multi-objective Optimization Models for Distributing Biosolids to Reuse Fields: A Case Study for the Blue Plains Wastewater Treatment Plant," Networks and Spatial Economics, Springer, vol. 11(1), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:2:d:10.1007_s10898-024-01376-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.