IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i2d10.1007_s10898-023-01357-x.html
   My bibliography  Save this article

First- and second-order optimality conditions of nonsmooth sparsity multiobjective optimization via variational analysis

Author

Listed:
  • Jiawei Chen

    (Southwest University)

  • Huasheng Su

    (Southwest University)

  • Xiaoqing Ou

    (Chongqing College of Humanities, Science & Technology)

  • Yibing Lv

    (Yangtze University)

Abstract

In this paper, we investigate optimality conditions of nonsmooth sparsity multiobjective optimization problem (shortly, SMOP) by the advanced variational analysis. We present the variational analysis characterizations, such as tangent cones, normal cones, dual cones and second-order tangent set, of the sparse set, and give the relationships among the sparse set and its tangent cones and second-order tangent set. The first-order necessary conditions for local weakly Pareto efficient solution of SMOP are established under some suitable conditions. We also obtain the equivalence between basic feasible point and stationary point defined by the Fréchet normal cone of SMOP. The sufficient optimality conditions of SMOP are derived under the pseudoconvexity. Moreover, the second-order necessary and sufficient optimality conditions of SMOP are established by the Dini directional derivatives of the objective function and the Bouligand tangent cone and second-order tangent set of the sparse set.

Suggested Citation

  • Jiawei Chen & Huasheng Su & Xiaoqing Ou & Yibing Lv, 2024. "First- and second-order optimality conditions of nonsmooth sparsity multiobjective optimization via variational analysis," Journal of Global Optimization, Springer, vol. 89(2), pages 303-325, June.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01357-x
    DOI: 10.1007/s10898-023-01357-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01357-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01357-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    2. D. Aussel, 1998. "Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 29-45, April.
    3. Jiawei Chen & La Huang & Shengjie Li, 2018. "Separations and Optimality of Constrained Multiobjective Optimization via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 794-823, September.
    4. Qamrul Hasan Ansari & Elisabeth Köbis & Pradeep Kumar Sharma, 2019. "Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 817-839, June.
    5. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    6. Jiawei Chen & Yu-Hong Dai, 2023. "Multiobjective optimization with least constraint violation: optimality conditions and exact penalization," Journal of Global Optimization, Springer, vol. 87(2), pages 807-830, November.
    7. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.
    8. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    2. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    3. Zhijun Xu & Jing Zhou, 2023. "A simultaneous diagonalization based SOCP relaxation for portfolio optimization with an orthogonality constraint," Computational Optimization and Applications, Springer, vol. 85(1), pages 247-261, May.
    4. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    5. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    6. Adrian Gepp & Geoff Harris & Bruce Vanstone, 2020. "Financial applications of semidefinite programming: a review and call for interdisciplinary research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3527-3555, December.
    7. Wu, Zili, 2018. "Characterizations of weakly sharp solutions for a variational inequality with a pseudomonotone mapping," European Journal of Operational Research, Elsevier, vol. 265(2), pages 448-453.
    8. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    9. J. Dutta & S. Chandra, 2002. "Convexifactors, Generalized Convexity, and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 41-64, April.
    10. Justin A. Sirignano & Gerry Tsoukalas & Kay Giesecke, 2016. "Large-Scale Loan Portfolio Selection," Operations Research, INFORMS, vol. 64(6), pages 1239-1255, December.
    11. Xiaojin Zheng & Xiaoling Sun & Duan Li & Jie Sun, 2014. "Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 379-397, October.
    12. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    13. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    14. Samim Ghamami & Paul Glasserman, 2019. "Submodular Risk Allocation," Management Science, INFORMS, vol. 65(10), pages 4656-4675, October.
    15. Immanuel Bomze & Bo Peng & Yuzhou Qiu & E. Alper Yıldırım, 2025. "On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-36, March.
    16. Vsevolod Ivanov, 2010. "On a theorem due to Crouzeix and Ferland," Journal of Global Optimization, Springer, vol. 46(1), pages 31-47, January.
    17. Janusz Miroforidis, 2021. "Bounds on efficient outcomes for large-scale cardinality-constrained Markowitz problems," Journal of Global Optimization, Springer, vol. 80(3), pages 617-634, July.
    18. Tahereh Khodamoradi & Maziar Salahi & Ali Reza Najafi, 2021. "Cardinality-constrained portfolio optimization with short selling and risk-neutral interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 197-214, June.
    19. Vsevolod I. Ivanov, 2020. "Characterization of Radially Lower Semicontinuous Pseudoconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 368-383, February.
    20. Wenyan Han & Guolin Yu, 2024. "Optimality and error bound for set optimization with application to uncertain multi-objective programming," Journal of Global Optimization, Springer, vol. 88(4), pages 979-998, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01357-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.