IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v193y2022i1d10.1007_s10957-022-02024-z.html
   My bibliography  Save this article

Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems

Author

Listed:
  • Qamrul Hasan Ansari

    (Aligarh Muslim University)

  • Pradeep Kumar Sharma

    (University of Delhi South Campus)

Abstract

In this paper, we study several interesting basic properties of generalized oriented distance function with respect to co-radiant sets or free disposal sets, which are more general than a cone and play an important role to study quasi-minimal solutions of set optimization problems. In particular, we deal with some special properties, namely, translation property, subadditivity and monotonicity, by using co-radiant sets. Moreover, we investigate several kinds of monotonicity properties by means of nonconvex free disposal sets. As an application, we study some optimality conditions for quasi-minimal solutions of set optimization problems by using generalized oriented distance function. At the end, we give an existence theorem for cone saddle-point for set-valued maps. Several examples are given to verify the validity and effectiveness of the derived results.

Suggested Citation

  • Qamrul Hasan Ansari & Pradeep Kumar Sharma, 2022. "Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 247-279, June.
  • Handle: RePEc:spr:joptap:v:193:y:2022:i:1:d:10.1007_s10957-022-02024-z
    DOI: 10.1007/s10957-022-02024-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02024-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02024-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Juan Enrique Martínez-Legaz, 2017. "Erratum to: Increasing quasiconcave co-radiant functions with applications in mathematical economics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 521-521, June.
    2. C. Gutiérrez & B. Jiménez & V. Novo, 2015. "Optimality Conditions for Quasi-Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 796-820, December.
    3. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    4. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    5. Y. Gao & S. H. Hou & X. M. Yang, 2012. "Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 97-120, January.
    6. Juan Enrique Martínez-Legaz & Alexander M. Rubinov & Siegfried Schaible, 2005. "Increasing quasiconcave co-radiant functions with applications in mathematical economics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(2), pages 261-280, June.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    9. Honglin Luo & Xianfu Wang & Brett Lukens, 2019. "Variational Analysis on the Signed Distance Functions," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 751-774, March.
    10. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.
    11. Khushboo & C. S. Lalitha, 2019. "A unified minimal solution in set optimization," Journal of Global Optimization, Springer, vol. 74(1), pages 195-211, May.
    12. Qamrul Hasan Ansari & Elisabeth Köbis & Pradeep Kumar Sharma, 2019. "Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 817-839, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenyan Han & Guolin Yu, 2024. "Optimality and error bound for set optimization with application to uncertain multi-objective programming," Journal of Global Optimization, Springer, vol. 88(4), pages 979-998, April.
    2. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    2. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    3. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    4. Khushboo & C. S. Lalitha, 2023. "Characterizations of set order relations and nonlinear scalarizations via generalized oriented distance function in set optimization," Journal of Global Optimization, Springer, vol. 85(1), pages 235-249, January.
    5. Aleksandr G. Alekseev & Mikhail V. Sokolov, 2016. "Benchmark-based evaluation of portfolio performance: a characterization," Annals of Finance, Springer, vol. 12(3), pages 409-440, December.
    6. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    7. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    8. Aleksandr Alekseev & Mikhail Sokolov, 2016. "Portfolio Return Relative to a Benchmark," EUSP Department of Economics Working Paper Series 2016/04, European University at St. Petersburg, Department of Economics.
    9. Meenakshi Gupta & Manjari Srivastava, 2020. "Approximate Solutions and Levitin–Polyak Well-Posedness for Set Optimization Using Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 191-208, July.
    10. Elisa Caprari & Lorenzo Cerboni Baiardi & Elena Molho, 2022. "Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach," Journal of Global Optimization, Springer, vol. 84(2), pages 295-320, October.
    11. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    12. Alexander Alekseev & Mikhail Sokolov, 2016. "Portfolio Return Relative to a Benchmark," EUSP Department of Economics Working Paper Series Ec-04/16, European University at St. Petersburg, Department of Economics.
    13. Mynbaev, Kairat, 1998. "Profit Maximization and the Threshold Price," MPRA Paper 20323, University Library of Munich, Germany, revised 29 Jan 2010.
    14. S. Mirzadeh & H. Mohebi, 2016. "Abstract Concavity of Increasing Co-radiant and Quasi-Concave Functions with Applications in Mathematical Economics," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 443-472, May.
    15. Wenyan Han & Guolin Yu, 2023. "Characterizations of multi-objective robustness solutions defined by Minkowski set difference," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1361-1380, December.
    16. C. Gutiérrez & R. López & J. Martínez, 2022. "Generalized $${\varepsilon }$$ ε -quasi solutions of set optimization problems," Journal of Global Optimization, Springer, vol. 82(3), pages 559-576, March.
    17. Wenyan Han & Guolin Yu, 2024. "Optimality and error bound for set optimization with application to uncertain multi-objective programming," Journal of Global Optimization, Springer, vol. 88(4), pages 979-998, April.
    18. Zi-Ru Zhang & Yang-Dong Xu, 2024. "The Continuity and Convexity of a Nonlinear Scalarization Function with Applications in Set Optimization Problems Involving a Partial Order Relation," Mathematics, MDPI, vol. 12(23), pages 1-22, December.
    19. L. Huerga & B. Jiménez & V. Novo & A. Vílchez, 2021. "Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 413-436, April.
    20. C. Gutiérrez & B. Jiménez & V. Novo, 2015. "Optimality Conditions for Quasi-Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 796-820, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:193:y:2022:i:1:d:10.1007_s10957-022-02024-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.