IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i3d10.1007_s10898-022-01162-y.html
   My bibliography  Save this article

Parallel algorithm portfolios with adaptive resource allocation strategy

Author

Listed:
  • Konstantinos E. Parsopoulos

    (University of Ioannina)

  • Vasileios A. Tatsis

    (University of Ioannina)

  • Ilias S. Kotsireas

    (Wilfrid Laurier University)

  • Panos M. Pardalos

    (University of Florida)

Abstract

Algorithm portfolios are multi-algorithmic schemes that combine a number of solvers into a joint framework for solving global optimization problems. A crucial part of such schemes is the resource allocation process that is responsible for assigning computational resources to the constituent algorithms. We propose a resource allocation process based on adaptive decision-making procedures. The proposed approach is incorporated in algorithm portfolios composed of three essential types of numerical optimization algorithms, namely gradient-based, direct search, and swarm intelligence algorithms. The designed algorithm portfolios are experimentally demonstrated on a challenging optimization problem for different dimensions and experimental settings. The accompanying statistical analysis offers interesting conclusions and insights on the performance of the algorithm portfolio compared to its constituent algorithms, as well as on the effect of its parameters.

Suggested Citation

  • Konstantinos E. Parsopoulos & Vasileios A. Tatsis & Ilias S. Kotsireas & Panos M. Pardalos, 2024. "Parallel algorithm portfolios with adaptive resource allocation strategy," Journal of Global Optimization, Springer, vol. 88(3), pages 685-705, March.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:3:d:10.1007_s10898-022-01162-y
    DOI: 10.1007/s10898-022-01162-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01162-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01162-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilias Kotsireas & Panos Pardalos & Julius Žilinskas, 2024. "Preface," Journal of Global Optimization, Springer, vol. 88(3), pages 531-532, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    2. Meixian Jiang & Jiajia Feng & Jian Zhou & Lin Zhou & Fangzheng Ma & Guanghua Wu & Yuqiu Zhang, 2023. "Multi-Terminal Berth and Quay Crane Joint Scheduling in Container Ports Considering Carbon Cost," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    3. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    4. Darko B. Vukovic & Lubov Spitsina & Ekaterina Gribanova & Vladislav Spitsin & Ivan Lyzin, 2023. "Predicting the Performance of Retail Market Firms: Regression and Machine Learning Methods," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    5. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    6. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    7. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    8. Petris, Matteo & Pellegrini, Paola & Pesenti, Raffaele, 2022. "Models and algorithms for an integrated vessel scheduling and tug assignment problem within a canal harbor," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1120-1135.
    9. Jaap-Jan Steeg & Menno Oudshoorn & Neil Yorke-Smith, 2023. "Berth planning and real-time disruption recovery: a simulation study for a tidal port," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 70-110, March.
    10. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:3:d:10.1007_s10898-022-01162-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.