IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v28y2025i1d10.1007_s10951-024-00819-8.html
   My bibliography  Save this article

Selection hyper-heuristics and job shop scheduling problems: How does instance size influence performance?

Author

Listed:
  • Fernando Garza-Santisteban

    (Tecnologico de Monterrey)

  • Jorge Mario Cruz-Duarte

    (Tecnologico de Monterrey)

  • Ivan Amaya

    (Tecnologico de Monterrey)

  • José Carlos Ortiz-Bayliss

    (Tecnologico de Monterrey)

  • Santiago Enrique Conant-Pablos

    (Tecnologico de Monterrey)

  • Hugo Terashima-Marín

    (Tecnologico de Monterrey)

Abstract

Selection hyper-heuristics are novel tools that combine low-level heuristics into robust solvers commonly used for tackling combinatorial optimization problems. However, the training cost is a drawback that hinders their applicability. In this work, we analyze the effect of training with different problem sizes to determine whether an effective simplification can be made. We select Job Shop Scheduling problems as an illustrative scenario to analyze and propose two hyper-heuristic approaches, based on Simulated Annealing (SA) and Unified Particle Swarm Optimization (UPSO), which use a defined set of simple priority dispatching rules as heuristics. Preliminary results suggest a relationship between instance size and hyper-heuristic performance. We conduct experiments training on two different instance sizes to understand such a relationship better. Our data show that hyper-heuristics trained in small-sized instances perform similarly to those trained in larger ones. However, the extent of such an effect changes depending on the approach followed. This effect was more substantial for the model powered by SA, and the resulting behavior for small and large-sized instances was very similar. Conversely, for the model powered by UPSO, data were more outspread. Even so, the phenomenon was noticeable as the median performance was similar between small and large-sized instances. In fact, through UPSO, we achieved hyper-heuristics that performed better on the training set. However, using small-sized instances seems to overspecialize, which results in spread-out testing performance. Hyper-heuristics resulting from training with small-sized instances can outperform a synthetic Oracle on large-sized testing instances in about 50% of the runs for SA and 25% for UPSO. This allows for significant time savings during the training procedure, thus representing a worthy approach.

Suggested Citation

  • Fernando Garza-Santisteban & Jorge Mario Cruz-Duarte & Ivan Amaya & José Carlos Ortiz-Bayliss & Santiago Enrique Conant-Pablos & Hugo Terashima-Marín, 2025. "Selection hyper-heuristics and job shop scheduling problems: How does instance size influence performance?," Journal of Scheduling, Springer, vol. 28(1), pages 85-99, February.
  • Handle: RePEc:spr:jsched:v:28:y:2025:i:1:d:10.1007_s10951-024-00819-8
    DOI: 10.1007/s10951-024-00819-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-024-00819-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-024-00819-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    2. Peter J. M. van Laarhoven & Emile H. L. Aarts & Jan Karel Lenstra, 1992. "Job Shop Scheduling by Simulated Annealing," Operations Research, INFORMS, vol. 40(1), pages 113-125, February.
    3. Daniel Delahaye & Supatcha Chaimatanan & Marcel Mongeau, 2019. "Simulated Annealing: From Basics to Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 1-35, Springer.
    4. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    5. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    6. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    7. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    8. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    9. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannik Zeiträg & José Rui Figueira, 2023. "Automatically evolving preference-based dispatching rules for multi-objective job shop scheduling," Journal of Scheduling, Springer, vol. 26(3), pages 289-314, June.
    2. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    4. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    5. Tsogbetse, Israël & Bernard, Julien & Manier, Hervé & Manier, Marie-Ange, 2024. "Influence of encoding and neighborhood in landscape analysis and tabu search performance for job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 319(3), pages 739-746.
    6. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    7. Shahed Mahmud & Ripon K. Chakrabortty & Alireza Abbasi & Michael J. Ryan, 2022. "Switching strategy-based hybrid evolutionary algorithms for job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1939-1966, October.
    8. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    9. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    10. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    11. Hossein Badri & Tayebeh Bahreini & Daniel Grosu, 2024. "Parallel shifting bottleneck algorithms for non-permutation flow shop scheduling," Annals of Operations Research, Springer, vol. 343(1), pages 39-65, December.
    12. Ying Sun & Jeng-Shyang Pan & Pei Hu & Shu-Chuan Chu, 2023. "Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1639-1665, April.
    13. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    14. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    15. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    16. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    17. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    18. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    19. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    20. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:28:y:2025:i:1:d:10.1007_s10951-024-00819-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.