IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v83y2022i4d10.1007_s10898-021-01117-9.html
   My bibliography  Save this article

The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective

Author

Listed:
  • Christoph Buchheim

    (TU Dortmund)

  • Dorothee Henke

    (TU Dortmund)

Abstract

We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.

Suggested Citation

  • Christoph Buchheim & Dorothee Henke, 2022. "The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective," Journal of Global Optimization, Springer, vol. 83(4), pages 803-824, August.
  • Handle: RePEc:spr:jglopt:v:83:y:2022:i:4:d:10.1007_s10898-021-01117-9
    DOI: 10.1007/s10898-021-01117-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01117-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01117-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Jannis Kurtz, 2018. "Robust combinatorial optimization under budgeted–ellipsoidal uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 315-337, December.
    3. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    4. T. D. Chuong & V. Jeyakumar, 2017. "Finding Robust Global Optimal Values of Bilevel Polynomial Programs with Uncertain Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 683-703, May.
    5. Puchit Sariddichainunta & Masahiro Inuiguchi, 2017. "Global optimality test for maximin solution of bilevel linear programming with ambiguous lower-level objective function," Annals of Operations Research, Springer, vol. 256(2), pages 285-304, September.
    6. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    7. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    8. M. Hosein Zare & Osman Y. Özaltın & Oleg A. Prokopyev, 2018. "On a class of bilevel linear mixed-integer programs in adversarial settings," Journal of Global Optimization, Springer, vol. 71(1), pages 91-113, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Buchheim & Dorothee Henke & Jannik Irmai, 2022. "The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower’s Objective," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 521-542, August.
    2. Yasmine Beck & Daniel Bienstock & Martin Schmidt & Johannes Thürauf, 2023. "On a Computationally Ill-Behaved Bilevel Problem with a Continuous and Nonconvex Lower Level," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 428-447, July.
    3. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    2. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    3. Arie M. C. A. Koster & Michael Poss, 2018. "Special issue on: robust combinatorial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 207-209, September.
    4. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Pass-Lanneau, Adèle, 2021. "Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 22-33.
    5. Christoph Buchheim & Dorothee Henke & Jannik Irmai, 2022. "The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower’s Objective," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 521-542, August.
    6. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2022. "Robust two-stage combinatorial optimization problems under convex second-stage cost uncertainty," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 497-527, April.
    7. Sagnol, Guillaume & Barner, Christoph & Borndörfer, Ralf & Grima, Mickaël & Seeling, Matthes & Spies, Claudia & Wernecke, Klaus, 2018. "Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 420-435.
    8. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    9. Marin Bougeret & Jérémy Omer & Michael Poss, 2023. "Optimization Problems in Graphs with Locational Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 578-592, May.
    10. Chunlin Xin & Letu Qingge & Jiamin Wang & Binhai Zhu, 2015. "Robust optimization for the hazardous materials transportation network design problem," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 320-334, August.
    11. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    12. Denoyel, Victoire & Alfandari, Laurent & Thiele, Aurélie, 2017. "Optimizing healthcare network design under reference pricing and parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 263(3), pages 996-1006.
    13. M. Hosein Zare & Oleg A. Prokopyev & Denis Sauré, 2020. "On Bilevel Optimization with Inexact Follower," Decision Analysis, INFORMS, vol. 17(1), pages 74-95, March.
    14. Thai Doan Chuong, 2020. "Optimality conditions for nonsmooth multiobjective bilevel optimization problems," Annals of Operations Research, Springer, vol. 287(2), pages 617-642, April.
    15. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    16. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    17. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    18. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    19. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    20. Carvalho, Margarida & Lodi, Andrea, 2023. "A theoretical and computational equilibria analysis of a multi-player kidney exchange program," European Journal of Operational Research, Elsevier, vol. 305(1), pages 373-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:83:y:2022:i:4:d:10.1007_s10898-021-01117-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.