IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i3d10.1007_s10898-020-00952-6.html
   My bibliography  Save this article

The DIRECT algorithm: 25 years Later

Author

Listed:
  • Donald R. Jones

    (University of Michigan)

  • Joaquim R. R. A. Martins

    (University of Michigan)

Abstract

Introduced in 1993, the DIRECT global optimization algorithm provided a fresh approach to minimizing a black-box function subject to lower and upper bounds on the variables. In contrast to the plethora of nature-inspired heuristics, DIRECT was deterministic and had only one hyperparameter (the desired accuracy). Moreover, the algorithm was simple, easy to implement, and usually performed well on low-dimensional problems (up to six variables). Most importantly, DIRECT balanced local and global search (exploitation vs. exploration) in a unique way: in each iteration, several points were sampled, some for global and some for local search. This approach eliminated the need for “tuning parameters” that set the balance between local and global search. However, the very same features that made DIRECT simple and conceptually attractive also created weaknesses. For example, it was commonly observed that, while DIRECT is often fast to find the basin of the global optimum, it can be slow to fine-tune the solution to high accuracy. In this paper, we identify several such weaknesses and survey the work of various researchers to extend DIRECT so that it performs better. All of the extensions show substantial improvement over DIRECT on various test functions. An outstanding challenge is to improve performance robustly across problems of different degrees of difficulty, ranging from simple (unimodal, few variables) to very hard (multimodal, sharply peaked, many variables). Opportunities for further improvement may lie in combining the best features of the different extensions.

Suggested Citation

  • Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00952-6
    DOI: 10.1007/s10898-020-00952-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00952-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00952-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.
    2. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    3. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    4. G. Di Pillo & G. Liuzzi & S. Lucidi & V. Piccialli & F. Rinaldi, 2016. "A DIRECT-type approach for derivative-free constrained global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 361-397, November.
    5. Jingxian Hao & Zhuoping Yu & Zhiguo Zhao & Peihong Shen & Xiaowen Zhan, 2016. "Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm," Energies, MDPI, vol. 9(12), pages 1-24, November.
    6. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    7. Na, Jonggeol & Lim, Youngsub & Han, Chonghun, 2017. "A modified DIRECT algorithm for hidden constraints in an LNG process optimization," Energy, Elsevier, vol. 126(C), pages 488-500.
    8. YA. D. Sergeyev, 2000. "Efficient Strategy for Adaptive Partition of N-Dimensional Intervals in the Framework of Diagonal Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 145-168, October.
    9. Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
    10. Qinghua Tao & Xiaolin Huang & Shuning Wang & Li Li, 2017. "Adaptive block coordinate DIRECT algorithm," Journal of Global Optimization, Springer, vol. 69(4), pages 797-822, December.
    11. Ratko Grbić & Emmanuel Nyarko & Rudolf Scitovski, 2013. "A modification of the DIRECT method for Lipschitz global optimization for a symmetric function," Journal of Global Optimization, Springer, vol. 57(4), pages 1193-1212, December.
    12. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    13. C. Kokail & C. Maier & R. van Bijnen & T. Brydges & M. K. Joshi & P. Jurcevic & C. A. Muschik & P. Silvi & R. Blatt & C. F. Roos & P. Zoller, 2019. "Self-verifying variational quantum simulation of lattice models," Nature, Nature, vol. 569(7756), pages 355-360, May.
    14. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    15. Gianni Pillo & Stefano Lucidi & Francesco Rinaldi, 2015. "A Derivative-Free Algorithm for Constrained Global Optimization Based on Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 862-882, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    2. Martín Alejandro Valencia-Ponce & Esteban Tlelo-Cuautle & Luis Gerardo de la Fraga, 2021. "Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
    3. E. A. Tsvetkov & R. A. Krymov, 2022. "Pure Random Search with Virtual Extension of Feasible Region," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 575-595, November.
    4. Riccardo Pellegrini & Andrea Serani & Giampaolo Liuzzi & Francesco Rinaldi & Stefano Lucidi & Matteo Diez, 2022. "A Derivative-Free Line-Search Algorithm for Simulation-Driven Design Optimization Using Multi-Fidelity Computations," Mathematics, MDPI, vol. 10(3), pages 1-13, February.
    5. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    6. Kaiwen Ma & Luis Miguel Rios & Atharv Bhosekar & Nikolaos V. Sahinidis & Sreekanth Rajagopalan, 2023. "Branch-and-Model: a derivative-free global optimization algorithm," Computational Optimization and Applications, Springer, vol. 85(2), pages 337-367, June.
    7. Slicker, Gerilyn & Hustedt, Jason T., 2022. "Predicting participation in the child care subsidy system from provider features, community characteristics, and use of funding streams," Children and Youth Services Review, Elsevier, vol. 136(C).
    8. Ajenjo, Antoine & Ardillon, Emmanuel & Chabridon, Vincent & Cogan, Scott & Sadoulet-Reboul, Emeline, 2023. "Robustness evaluation of the reliability of penstocks combining line sampling and neural networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Sayantan Mukherjee & Nawaf F. Aljuwayhel & Sasmita Bal & Purna Chandra Mishra & Naser Ali, 2022. "Modelling, Analysis and Entropy Generation Minimization of Al 2 O 3 -Ethylene Glycol Nanofluid Convective Flow inside a Tube," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    2. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    3. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    4. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    5. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    6. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    7. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    8. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    9. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    10. Kaiwen Ma & Luis Miguel Rios & Atharv Bhosekar & Nikolaos V. Sahinidis & Sreekanth Rajagopalan, 2023. "Branch-and-Model: a derivative-free global optimization algorithm," Computational Optimization and Applications, Springer, vol. 85(2), pages 337-367, June.
    11. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    12. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    13. Rudolf Scitovski & Kristian Sabo, 2019. "Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem," Journal of Global Optimization, Springer, vol. 74(1), pages 63-77, May.
    14. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.
    15. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.
    16. Rudolf Scitovski & Snježana Majstorović & Kristian Sabo, 2021. "A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem," Journal of Global Optimization, Springer, vol. 79(3), pages 669-686, March.
    17. Candelieri Antonio, 2021. "Sequential model based optimization of partially defined functions under unknown constraints," Journal of Global Optimization, Springer, vol. 79(2), pages 281-303, February.
    18. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    19. Jorge Miranda-Pino & Daniel Murphy & Kieran Walsh & Eric Young, 2020. "A Model of Expenditure Shocks," Working Papers 20-04, Federal Reserve Bank of Cleveland.
    20. Sabo, Kristian & Grahovac, Danijel & Scitovski, Rudolf, 2020. "Incremental method for multiple line detection problem — iterative reweighted approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 588-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00952-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.