IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i1d10.1007_s10898-020-00928-6.html
   My bibliography  Save this article

Oscars-ii: an algorithm for bound constrained global optimization

Author

Listed:
  • C. J. Price

    (University of Canterbury)

  • M. Reale

    (University of Canterbury)

  • B. L. Robertson

    (University of Canterbury)

Abstract

An adaptation of the oscars algorithm for bound constrained global optimization is presented, and numerically tested. The algorithm is a stochastic direct search method, and has low overheads which are constant per sample point. Some sample points are drawn randomly in the feasible region from time to time, ensuring global convergence almost surely under mild conditions. Additional sample points are preferentially placed near previous good sample points to improve the rate of convergence. Connections with partitioning strategies are explored for oscars and the new method, showing these methods have a reduced risk of sample point redundancy. Numerical testing shows that the method is viable in practice, and is substantially faster than oscars in 4 or more dimensions. Comparison with other methods shows good performance in moderately high dimensions. A power law test for identifying and avoiding proper local minima is presented and shown to give modest improvement.

Suggested Citation

  • C. J. Price & M. Reale & B. L. Robertson, 2021. "Oscars-ii: an algorithm for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 39-57, January.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:1:d:10.1007_s10898-020-00928-6
    DOI: 10.1007/s10898-020-00928-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00928-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00928-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Calvin & Gražina Gimbutienė & William O. Phillips & Antanas Žilinskas, 2018. "On convergence rate of a rectangular partition based global optimization algorithm," Journal of Global Optimization, Springer, vol. 71(1), pages 165-191, May.
    2. C. J. Price & M. Reale & B. L. Robertson, 2016. "Stochastic filter methods for generally constrained global optimization," Journal of Global Optimization, Springer, vol. 65(3), pages 441-456, July.
    3. Giampaolo Liuzzi & Stefano Lucidi & Veronica Piccialli, 2010. "A partition-based global optimization algorithm," Journal of Global Optimization, Springer, vol. 48(1), pages 113-128, September.
    4. Hirsch, M.J. & Pardalos, P.M. & Resende, M.G.C., 2010. "Speeding up continuous GRASP," European Journal of Operational Research, Elsevier, vol. 205(3), pages 507-521, September.
    5. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    6. Anatoly Zhigljavsky & Antanas Žilinskas, 2008. "Stochastic Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-74740-8, June.
    7. Rommel Regis & Christine Shoemaker, 2005. "Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions," Journal of Global Optimization, Springer, vol. 31(1), pages 153-171, January.
    8. Qunfeng Liu & Jinping Zeng, 2015. "Global optimization by multilevel partition," Journal of Global Optimization, Springer, vol. 61(1), pages 47-69, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    2. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    3. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    4. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.
    5. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    6. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    7. Cuicui Zheng & James Calvin & Craig Gotsman, 2021. "A DIRECT-type global optimization algorithm for image registration," Journal of Global Optimization, Springer, vol. 79(2), pages 431-445, February.
    8. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    9. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    10. Antanas Žilinskas & Jonathan Gillard & Megan Scammell & Anatoly Zhigljavsky, 2021. "Multistart with early termination of descents," Journal of Global Optimization, Springer, vol. 79(2), pages 447-462, February.
    11. James M. Calvin & Antanas Žilinskas, 2014. "On a Global Optimization Algorithm for Bivariate Smooth Functions," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 528-547, November.
    12. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    13. Vasiliy V. Grigoriev & Petr N. Vabishchevich, 2021. "Bayesian Estimation of Adsorption and Desorption Parameters for Pore Scale Transport," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    14. Rommel G. Regis & Christine A. Shoemaker, 2009. "Parallel Stochastic Global Optimization Using Radial Basis Functions," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 411-426, August.
    15. Lehmann, Sebastian & Huth, Andreas, 2015. "Fast calibration of a dynamic vegetation model with minimum observation data," Ecological Modelling, Elsevier, vol. 301(C), pages 98-105.
    16. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. D. Serafino & G. Liuzzi & V. Piccialli & F. Riccio & G. Toraldo, 2011. "A Modified DIviding RECTangles Algorithm for a Problem in Astrophysics," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 175-190, October.
    18. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    19. Driessen, L. & Brekelmans, R.C.M. & Gerichhausen, M. & Hamers, H.J.M. & den Hertog, D., 2006. "Why Methods for Optimization Problems with Time-Consuming Function Evaluations and Integer Variables Should Use Global Approximation Models," Other publications TiSEM 45a73d28-9fed-4b4c-a909-1, Tilburg University, School of Economics and Management.
    20. Alberto Bemporad, 2020. "Global optimization via inverse distance weighting and radial basis functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 571-595, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:1:d:10.1007_s10898-020-00928-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.