IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v78y2020i2d10.1007_s10898-020-00894-z.html
   My bibliography  Save this article

Revenue maximization of Internet of things provider using variable neighbourhood search

Author

Listed:
  • Vesna Radonjić Ɖogatović

    (University of Belgrade)

  • Marko Ɖogatović

    (University of Belgrade)

  • Milorad Stanojević

    (University of Belgrade)

  • Nenad Mladenović

    (Khalifa University)

Abstract

Internet of things (IoT) covers various aspects of collecting and exchanging data between diverse entities. From IoT provider’s perspective, one of the most significant issues is how to set the price that maximizes its revenue while meeting users’ requirements. In this paper, we focus on revenue maximization of the IoT service provider by applying pay per use pricing within the combinatorial sealed-bid auction. Pay per use pricing option implies that each user is charged per unit of consumption according to the actual usage. We assume that a user pays a threshold price for a unit of consumption, which is determined based on the auction. The auction is conducted with bidding prices set up in advance within service level agreement (SLA). We use variable neighbourhood search (VNS) in order to derive the optimal threshold price that maximizes IoT provider’s revenue, and users’ satisfaction. In addition, the optimization within the auction mechanism is conducted using different metaheuristics, which are compared with two types of VNS algorithms.

Suggested Citation

  • Vesna Radonjić Ɖogatović & Marko Ɖogatović & Milorad Stanojević & Nenad Mladenović, 2020. "Revenue maximization of Internet of things provider using variable neighbourhood search," Journal of Global Optimization, Springer, vol. 78(2), pages 375-396, October.
  • Handle: RePEc:spr:jglopt:v:78:y:2020:i:2:d:10.1007_s10898-020-00894-z
    DOI: 10.1007/s10898-020-00894-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00894-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00894-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Hansen & Nenad Mladenović & Jack Brimberg & José A. Moreno Pérez, 2010. "Variable Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 61-86, Springer.
    2. Jack Brimberg & Nenad Mladenović & Raca Todosijević & Dragan Urošević, 2019. "Solving the capacitated clustering problem with variable neighborhood search," Annals of Operations Research, Springer, vol. 272(1), pages 289-321, January.
    3. Lokketangen, Arne & Glover, Fred, 1998. "Solving zero-one mixed integer programming problems using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 624-658, April.
    4. Sergey V. Ivanov & Andrey I. Kibzun & Nenad Mladenović & Dragan Urošević, 2019. "Variable neighborhood search for stochastic linear programming problem with quantile criterion," Journal of Global Optimization, Springer, vol. 74(3), pages 549-564, July.
    5. Jun Pei & Zorica Dražić & Milan Dražić & Nenad Mladenović & Panos M. Pardalos, 2019. "Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear Equations," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 235-250, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Sifaleras & Nenad Mladenović & Panos M. Pardalos, 2020. "Preface to the special issue “ICVNS 2018”," Journal of Global Optimization, Springer, vol. 78(2), pages 239-240, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    2. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    3. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2011. "A new class of functions for measuring solution integrality in the Feasibility Pump approach," DIS Technical Reports 2011-08, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Zhiyuan Yuan & Jie Gao, 2022. "Dynamic Uncertainty Study of Multi-Center Location and Route Optimization for Medicine Logistics Company," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    5. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2010. "New concave penalty functions for improving the Feasibility Pump," DIS Technical Reports 2010-10, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    6. Kulturel-Konak, Sadan, 2012. "A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays," European Journal of Operational Research, Elsevier, vol. 223(3), pages 614-625.
    7. Paola Cappanera & Marco Trubian, 2005. "A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 82-98, February.
    8. Dolinskaya, Irina & Shi, Zhenyu (Edwin) & Smilowitz, Karen, 2018. "Adaptive orienteering problem with stochastic travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 1-19.
    9. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2013. "A new class of functions for measuring solution integrality in the Feasibility Pump approach: Complete Results," DIAG Technical Reports 2013-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    10. Ann Campbell & Michel Gendreau & Barrett Thomas, 2011. "The orienteering problem with stochastic travel and service times," Annals of Operations Research, Springer, vol. 186(1), pages 61-81, June.
    11. A.C. Mahasinghe & L.A. Sarathchandra, 2020. "An Optimization Model for Production Planning in the Synthetic Fertilizer Industry," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(3), pages 28-62, September.
    12. Chang, Ching-Ter, 2000. "An efficient linearization approach for mixed-integer problems," European Journal of Operational Research, Elsevier, vol. 123(3), pages 652-659, June.
    13. Guastaroba, G. & Savelsbergh, M. & Speranza, M.G., 2017. "Adaptive Kernel Search: A heuristic for solving Mixed Integer linear Programs," European Journal of Operational Research, Elsevier, vol. 263(3), pages 789-804.
    14. Lejeune, M.A., 2006. "A variable neighborhood decomposition search method for supply chain management planning problems," European Journal of Operational Research, Elsevier, vol. 175(2), pages 959-976, December.
    15. Zheng Wang & Wei Xu & Xiangpei Hu & Yong Wang, 2022. "Inventory allocation to robotic mobile-rack and picker-to-part warehouses at minimum order-splitting and replenishment costs," Annals of Operations Research, Springer, vol. 316(1), pages 467-491, September.
    16. Shaowen Lan & Wenjuan Fan & Kaining Shao & Shanlin Yang & Panos M. Pardalos, 2022. "A column-generation-based approach for an integrated service planning and physician scheduling problem considering re-consultation," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3446-3476, December.
    17. Michel Gendreau & Jean-Yves Potvin, 2005. "Metaheuristics in Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 189-213, November.
    18. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    19. J. Fabian Meier & Uwe Clausen, 2018. "Solving Single Allocation Hub Location Problems on Euclidean Data," Transportation Science, INFORMS, vol. 52(5), pages 1141-1155, October.
    20. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:78:y:2020:i:2:d:10.1007_s10898-020-00894-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.