IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v67y2017i1d10.1007_s10898-015-0347-7.html
   My bibliography  Save this article

Optimal transport and a bilevel location-allocation problem

Author

Listed:
  • Lina Mallozzi

    (University of Naples Federico II)

  • Antonia Passarelli di Napoli

    (University of Naples Federico II)

Abstract

In this paper a two-stage optimization model is studied to find the optimal location of new facilities and the optimal partition of the consumers (location-allocation problem). The social planner minimizes the social costs, i.e. the fixed costs plus the waiting time costs, taking into account that the citizens are partitioned in the region according to minimizing the capacity costs plus the distribution costs in the service regions. By using optimal transport tools, existence results of solutions to the location-allocation problem are presented together with some examples.

Suggested Citation

  • Lina Mallozzi & Antonia Passarelli di Napoli, 2017. "Optimal transport and a bilevel location-allocation problem," Journal of Global Optimization, Springer, vol. 67(1), pages 207-221, January.
  • Handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-015-0347-7
    DOI: 10.1007/s10898-015-0347-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-015-0347-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-015-0347-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leon A Petrosyan & Nikolay A Zenkevich, 2016. "Game Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9824, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Mallozzi & Justo Puerto & Moisés Rodríguez-Madrena, 2019. "On Location-Allocation Problems for Dimensional Facilities," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 730-767, August.
    2. Liming Yao & Zhongwen Xu & Ziqiang Zeng, 2020. "A Soft‐Path Solution to Risk Reduction by Modeling Medical Waste Disposal Center Location‐Allocation Optimization," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1863-1886, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sokolov Boris & Okhtilev Mikhail & Potryasaev Semyon & Merkuryev Yuri, 2013. "Multi-model Description of Monitoring and Control Systems of Natural and Technological Objects," Information Technology and Management Science, Sciendo, vol. 16(1), pages 11-17, December.
    2. Saglam, Ismail, 2016. "An Alternative Characterization for Iterated Kalai-Smorodinsky-Nash Compromise," MPRA Paper 73564, University Library of Munich, Germany.
    3. G. Rossini, 2004. "Vertical integration in a stochastic framework and a nonsymmetric bargaining equilibrium," Working Papers 527, Dipartimento Scienze Economiche, Universita' di Bologna.
    4. Ismail Saglam, 2017. "Iterated Kalai–Smorodinsky–Nash compromise," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 335-349, November.
    5. Miglo, Anton & Zenkevich, Nikolay, 2005. "Non-hierarchical signalling: two-stage financing game," MPRA Paper 1264, University Library of Munich, Germany, revised 2006.
    6. Javier Frutos & Guiomar Martín-Herrán, 2015. "Does Flexibility Facilitate Sustainability of Cooperation Over Time? A Case Study from Environmental Economics," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 657-677, May.
    7. Zeng Lian & Jie Zheng, 2021. "A Dynamic Model of Cournot Competition for an Oligopolistic Market," Mathematics, MDPI, vol. 9(5), pages 1-18, February.
    8. Pashkus, Natalia A., 2014. "Using The Mechanism Of Harmonization Of Relations And Conflict Resolution In The Implementation Of Economic Innovation In Education System," Annals of marketing-mba, Department of Marketing, Marketing MBA (RSconsult), vol. 3, November.
    9. Adib Bagh, 2013. "Better Reply Security and Existence of Equilibria in Differential Games," Dynamic Games and Applications, Springer, vol. 3(3), pages 325-340, September.
    10. Achim Hagen & Pierre von Mouche & Hans-Peter Weikard, 2020. "The Two-Stage Game Approach to Coalition Formation: Where We Stand and Ways to Go," Games, MDPI, vol. 11(1), pages 1-31, January.
    11. Nikolay Zenkevich & Margarita Gladkova, 2016. "Price Competition on the Market of Counterfeiting Software," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-10, June.
    12. Sokolovska, Olena & Sokolovskyi, Dmytro, 2015. "Tax evasion as a determinant of corruption: a game-theoretical analysis," MPRA Paper 66423, University Library of Munich, Germany, revised 2015.
    13. B. D. Bernheim & S. N. Slavov, 2009. "A Solution Concept for Majority Rule in Dynamic Settings," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 33-62.
    14. Paolo Bertoletti & Pierre Mouche, 2014. "Inferior factor in Cournot oligopoly revisited," Journal of Economics, Springer, vol. 112(1), pages 85-90, May.
    15. David W. K. Yeung, 2006. "Solution Mechanisms For Cooperative Stochastic Differential Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 309-326.
    16. Artem Sedakov & Hao Sun, 2020. "The Relationship between the Core and the Modified Cores of a Dynamic Game," Mathematics, MDPI, vol. 8(6), pages 1-13, June.
    17. D. W. K. Yeung & L. A. Petrosyan, 2004. "Subgame Consistent Cooperative Solutions in Stochastic Differential Games," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 651-666, March.
    18. Sergey Smirnov, 2019. "A Guaranteed Deterministic Approach to Superhedging—The Case of Convex Payoff Functions on Options," Mathematics, MDPI, vol. 7(12), pages 1-19, December.
    19. Elena M. Parilina & Alessandro Tampieri, 2018. "Stability and cooperative solution in stochastic games," Theory and Decision, Springer, vol. 84(4), pages 601-625, June.
    20. Anna Rettieva, 2020. "Rational Behavior in Dynamic Multicriteria Games," Mathematics, MDPI, vol. 8(9), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-015-0347-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.