IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v63y2015i2p297-318.html
   My bibliography  Save this article

Augmented Lagrangian methods for nonlinear programming with possible infeasibility

Author

Listed:
  • M. Gonçalves
  • J. Melo
  • L. Prudente

Abstract

In this paper, we consider a nonlinear programming problem for which the constraint set may be infeasible. We propose an algorithm based on a large family of augmented Lagrangian functions and analyze its global convergence properties taking into account the possible infeasibility of the problem. We show that, in a finite number of iterations, the algorithm stops detecting the infeasibility of the problem or finds an approximate feasible/optimal solution with any required precision. We illustrate, by means of numerical experiments, that our algorithm is reliable for different Lagrangian/penalty functions proposed in the literature. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • M. Gonçalves & J. Melo & L. Prudente, 2015. "Augmented Lagrangian methods for nonlinear programming with possible infeasibility," Journal of Global Optimization, Springer, vol. 63(2), pages 297-318, October.
  • Handle: RePEc:spr:jglopt:v:63:y:2015:i:2:p:297-318
    DOI: 10.1007/s10898-015-0289-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-015-0289-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-015-0289-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. V. Sahinidis & I. E. Grossmann, 1992. "Reformulation of the Multiperiod MILP Model for Capacity Expansion of Chemical Processes," Operations Research, INFORMS, vol. 40(1-supplem), pages 127-144, February.
    2. R. Polyak & I. Griva, 2004. "Primal-Dual Nonlinear Rescaling Method for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 111-156, July.
    3. Regina Burachik & Alfredo Iusem & Jefferson Melo, 2010. "A primal dual modified subgradient algorithm with sharp Lagrangian," Journal of Global Optimization, Springer, vol. 46(3), pages 347-361, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Joseane F. G. Macêdo & Elizabeth W. Karas & M. Fernanda P. Costa & Ana Maria A. C. Rocha, 2020. "Filter-based stochastic algorithm for global optimization," Journal of Global Optimization, Springer, vol. 77(4), pages 777-805, August.
    2. Paul Armand & Ngoc Nguyen Tran, 2019. "An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 197-215, April.
    3. Chao Min & Feifei Fan & Zhaozhong Yang & Xiaogang Li, 2019. "An Iterative Algorithm for the Nonlinear MC 2 Model with Variational Inequality Method," Mathematics, MDPI, vol. 7(6), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Barahona & Stuart Bermon & Oktay Günlük & Sarah Hood, 2005. "Robust capacity planning in semiconductor manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 459-468, August.
    2. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    3. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    4. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    5. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    6. Bennett, Derek P. & Yano, Candace A., 2004. "A decomposition approach for an equipment selection and multiple product routing problem incorporating environmental factors," European Journal of Operational Research, Elsevier, vol. 156(3), pages 643-664, August.
    7. Pinheiro, Ricardo B.N.M. & Lage, Guilherme G. & da Costa, Geraldo R.M., 2019. "A primal-dual integrated nonlinear rescaling approach applied to the optimal reactive dispatch problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1137-1153.
    8. Regina Burachik & Wilhelm Freire & C. Kaya, 2014. "Interior Epigraph Directions method for nonsmooth and nonconvex optimization via generalized augmented Lagrangian duality," Journal of Global Optimization, Springer, vol. 60(3), pages 501-529, November.
    9. Da Tian, 2015. "An exterior point polynomial-time algorithm for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 61(1), pages 51-78, May.
    10. Da Tian, 2014. "An entire space polynomial-time algorithm for linear programming," Journal of Global Optimization, Springer, vol. 58(1), pages 109-135, January.
    11. Shabbir Ahmed & Nikolaos V. Sahinidis, 2003. "An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion," Operations Research, INFORMS, vol. 51(3), pages 461-471, June.
    12. Efsun Kürüm & Kasirga Yildirak & Gerhard-Wilhelm Weber, 2012. "A classification problem of credit risk rating investigated and solved by optimisation of the ROC curve," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 529-557, September.
    13. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    14. Liwei Zhang & Jian Gu & Xiantao Xiao, 2011. "A class of nonlinear Lagrangians for nonconvex second order cone programming," Computational Optimization and Applications, Springer, vol. 49(1), pages 61-99, May.
    15. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    16. Marielena Fonseca Tófoli & Edilaine Martins Soler & Antonio Roberto Balbo & Edméa Cássia Baptista & Leonardo Nepomuceno, 2020. "Interior/exterior-point methods with inertia correction strategy for solving optimal reactive power flow problems with discrete variables," Annals of Operations Research, Springer, vol. 286(1), pages 243-263, March.
    17. Huang, Kai & Ahmed, Shabbir, 2010. "A stochastic programming approach for planning horizons of infinite horizon capacity planning problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 74-84, January.
    18. Regina S. Burachik & Alfredo N. Iusem & Jefferson G. Melo, 2013. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 108-131, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:63:y:2015:i:2:p:297-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.