IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v60y2014i2p165-182.html
   My bibliography  Save this article

Column generation bounds for numerical microaggregation

Author

Listed:
  • Daniel Aloise
  • Pierre Hansen
  • Caroline Rocha
  • Éverton Santi

Abstract

The biggest challenge when disclosing private data is to share information contained in databases while protecting people from being individually identified. Microaggregation is a family of methods for statistical disclosure control. The principle of microaggregation is that confidentiality rules permit the publication of individual records if they are partitioned into groups of size larger or equal to a fixed threshold value, where none is more representative than the others in the same group. The application of such rules leads to replacing individual values by those computed from small groups (microaggregates), before data publication. This work proposes a column generation algorithm for numerical microaggregation in which its pricing problem is solved by a specialized branch-and-bound. The algorithm is able to find, for the first time, lower bounds for instances of three real-world datasets commonly used in the literature. Furthermore, new best known solutions are obtained for these instances by means of a simple heuristic method with the columns generated. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Daniel Aloise & Pierre Hansen & Caroline Rocha & Éverton Santi, 2014. "Column generation bounds for numerical microaggregation," Journal of Global Optimization, Springer, vol. 60(2), pages 165-182, October.
  • Handle: RePEc:spr:jglopt:v:60:y:2014:i:2:p:165-182
    DOI: 10.1007/s10898-014-0149-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0149-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0149-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    2. J. L. Goffin & A. Haurie & J. P. Vial, 1992. "Decomposition and Nondifferentiable Optimization with the Projective Algorithm," Management Science, INFORMS, vol. 38(2), pages 284-302, February.
    3. Hansen, Pierre & Mladenovic, Nenad & Moreno Pérez, Jos´e A., 2008. "Variable neighborhood search," European Journal of Operational Research, Elsevier, vol. 191(3), pages 593-595, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Yiyong & Kaku, Ikou & Zhao, Qiuhong & Zhang, Renqian, 2011. "A reduced variable neighborhood search algorithm for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 214(2), pages 223-231, October.
    2. Abraham Duarte & Eduardo G. Pardo, 2020. "Special issue on recent innovations in variable neighborhood search," Journal of Heuristics, Springer, vol. 26(3), pages 335-338, June.
    3. Javier Panadero & Jana Doering & Renatas Kizys & Angel A. Juan & Angels Fito, 2020. "A variable neighborhood search simheuristic for project portfolio selection under uncertainty," Journal of Heuristics, Springer, vol. 26(3), pages 353-375, June.
    4. Xiao, Yiyong & Zhang, Renqian & Zhao, Qiuhong & Kaku, Ikou & Xu, Yuchun, 2014. "A variable neighborhood search with an effective local search for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 102-114.
    5. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    6. Souza, M.J.F. & Coelho, I.M. & Ribas, S. & Santos, H.G. & Merschmann, L.H.C., 2010. "A hybrid heuristic algorithm for the open-pit-mining operational planning problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1041-1051, December.
    7. Ilic, Aleksandar & Urosevic, Dragan & Brimberg, Jack & Mladenovic, Nenad, 2010. "A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 206(2), pages 289-300, October.
    8. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    9. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    10. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    11. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    12. Almeder, Christian & Hartl, Richard F., 2013. "A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer," International Journal of Production Economics, Elsevier, vol. 145(1), pages 88-95.
    13. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    14. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    15. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    16. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    17. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    18. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    19. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    20. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:60:y:2014:i:2:p:165-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.