IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i4p1147-1172.html
   My bibliography  Save this article

Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality

Author

Listed:
  • Evrim Dalkiran
  • Hanif Sherali

Abstract

In this paper, we propose two sets of theoretically filtered bound-factor constraints for constructing reformulation-linearization technique (RLT)-based linear programming (LP) relaxations for solving polynomial programming problems. We establish related theoretical results for convergence to a global optimum for these reduced sized relaxations, and provide insights into their relative sizes and tightness. Extensive computational results are provided to demonstrate the relative effectiveness of the proposed theoretical filtering strategies in comparison to the standard RLT and a prior heuristic filtering technique using problems from the literature as well as randomly generated test cases. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:4:p:1147-1172
    DOI: 10.1007/s10898-012-0024-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-0024-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-0024-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    2. P. Nataraj & M. Arounassalame, 2011. "Constrained global optimization of multivariate polynomials using Bernstein branch and prune algorithm," Journal of Global Optimization, Springer, vol. 49(2), pages 185-212, February.
    3. Hanif Sherali & Evrim Dalkiran, 2011. "Combined bound-grid-factor constraints for enhancing RLT relaxations for polynomial programs," Journal of Global Optimization, Springer, vol. 51(3), pages 377-393, November.
    4. Hanif Sherali & Evrim Dalkiran & Jitamitra Desai, 2012. "Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts," Computational Optimization and Applications, Springer, vol. 52(2), pages 483-506, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    3. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keith Zorn & Nikolaos Sahinidis, 2014. "Global optimization of general nonconvex problems with intermediate polynomial substructures," Journal of Global Optimization, Springer, vol. 59(2), pages 673-693, July.
    2. Titi, Jihad & Garloff, Jürgen, 2019. "Matrix methods for the tensorial Bernstein form," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 254-271.
    3. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    4. Martin Ballerstein & Dennis Michaels, 2014. "Extended formulations for convex envelopes," Journal of Global Optimization, Springer, vol. 60(2), pages 217-238, October.
    5. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    6. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    7. N. V. Thoai, 2000. "Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 331-354, November.
    8. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    9. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.
    10. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    11. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    12. Tsao, Yu-Chung & Lu, Jye-Chyi & An, Na & Al-Khayyal, Faiz & Lu, Richard W. & Han, Guanghua, 2014. "Retailer shelf-space management with trade allowance: A Stackelberg game between retailer and manufacturers," International Journal of Production Economics, Elsevier, vol. 148(C), pages 133-144.
    13. Al-Khayyal, Faiz & Hwang, Seung-June, 2007. "Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model," European Journal of Operational Research, Elsevier, vol. 176(1), pages 106-130, January.
    14. Marcia Fampa & Jon Lee, 2021. "Convexification of bilinear forms through non-symmetric lifting," Journal of Global Optimization, Springer, vol. 80(2), pages 287-305, June.
    15. Manuel Ruiz & Olivier Briant & Jean-Maurice Clochard & Bernard Penz, 2013. "Large-scale standard pooling problems with constrained pools and fixed demands," Journal of Global Optimization, Springer, vol. 56(3), pages 939-956, July.
    16. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    17. Jochen Gorski & Frank Pfeuffer & Kathrin Klamroth, 2007. "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 373-407, December.
    18. J Irion & J-C Lu & F A Al-Khayyal & Y-C Tsao, 2011. "A hierarchical decomposition approach to retail shelf space management and assortment decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1861-1870, October.
    19. Marco Locatelli, 2016. "Polyhedral subdivisions and functional forms for the convex envelopes of bilinear, fractional and other bivariate functions over general polytopes," Journal of Global Optimization, Springer, vol. 66(4), pages 629-668, December.
    20. Irion, Jens & Lu, Jye-Chyi & Al-Khayyal, Faiz & Tsao, Yu-Chung, 2012. "A piecewise linearization framework for retail shelf space management models," European Journal of Operational Research, Elsevier, vol. 222(1), pages 122-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:4:p:1147-1172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.