IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i3p771-782.html
   My bibliography  Save this article

Geometric branch-and-bound methods for constrained global optimization problems

Author

Listed:
  • Daniel Scholz

Abstract

Geometric branch-and-bound methods are popular solution algorithms in deterministic global optimization to solve problems in small dimensions. The aim of this paper is to formulate a geometric branch-and-bound method for constrained global optimization problems which allows the use of arbitrary bounding operations. In particular, our main goal is to prove the convergence of the suggested method using the concept of the rate of convergence in geometric branch-and-bound methods as introduced in some recent publications. Furthermore, some efficient further discarding tests using necessary conditions for optimality are derived and illustrated numerically on an obnoxious facility location problem. Copyright The Author(s) 2013

Suggested Citation

  • Daniel Scholz, 2013. "Geometric branch-and-bound methods for constrained global optimization problems," Journal of Global Optimization, Springer, vol. 57(3), pages 771-782, November.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:3:p:771-782
    DOI: 10.1007/s10898-012-9961-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9961-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9961-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    2. Plastria, Frank, 1992. "GBSSS: The generalized big square small square method for planar single-facility location," European Journal of Operational Research, Elsevier, vol. 62(2), pages 163-174, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    2. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    3. Drezner, Tammy & Drezner, Zvi & Hulliger, Beat, 2014. "The Quintile Share Ratio in location analysis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 166-174.
    4. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    5. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    6. Fernandez, Jose & Pelegri'n, Blas & Plastria, Frank & Toth, Boglarka, 2007. "Solving a Huff-like competitive location and design model for profit maximization in the plane," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1274-1287, June.
    7. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
    8. Chan He & Yafang Lv & Horst Martini & Senlin Wu, 2023. "A Branch-and-Bound Approach for Estimating Covering Functionals of Convex Bodies," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 1036-1055, March.
    9. Dongyan Chen & Chan He & Senlin Wu, 2016. "Single facility collection depots location problem with random weights," Operational Research, Springer, vol. 16(2), pages 287-299, July.
    10. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    11. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    12. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    13. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    14. Loay Alkhalifa & Jack Brimberg, 2017. "Locating a minisum annulus: a new partial coverage distance model," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 373-393, July.
    15. Tammy Drezner & Zvi Drezner, 2011. "A note on equity across groups in facility location," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 705-711, October.
    16. Daniel Scholz, 2012. "Theoretical rate of convergence for interval inclusion functions," Journal of Global Optimization, Springer, vol. 53(4), pages 749-767, August.
    17. Zvi Drezner & Jack Brimberg, 2014. "Fitting concentric circles to measurements," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 119-133, February.
    18. Drezner, Zvi & Drezner, Tammy & Wesolowsky, George O., 2009. "Location with acceleration-deceleration distance," European Journal of Operational Research, Elsevier, vol. 198(1), pages 157-164, October.
    19. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    20. Schöbel, Anita & Scholz, Daniel, 2014. "A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 266-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:3:p:771-782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.