IDEAS home Printed from https://ideas.repec.org/a/spr/jeicoo/v4y2009i2p213-220.html
   My bibliography  Save this article

Microscopic spin model for the stock market with attractor bubbling on scale-free networks

Author

Listed:
  • Andrzej Krawiecki

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrzej Krawiecki, 2009. "Microscopic spin model for the stock market with attractor bubbling on scale-free networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(2), pages 213-220, November.
  • Handle: RePEc:spr:jeicoo:v:4:y:2009:i:2:p:213-220
    DOI: 10.1007/s11403-009-0055-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11403-009-0055-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11403-009-0055-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    2. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    3. Yang, Jae-Suk & Chae, Seungbyung & Jung, Woo-Sung & Moon, Hie-Tae, 2006. "Microscopic spin model for the dynamics of the return distribution of the Korean stock market index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 377-382.
    4. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Stanley, H.Eugene, 2003. "Understanding the cubic and half-cubic laws of financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 1-5.
    5. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    6. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    7. Stanley, H.E. & Amaral, L.A.N. & Gabaix, X. & Gopikrishnan, P. & Plerou, V., 2001. "Similarities and differences between physics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 1-15.
    8. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    9. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    2. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    2. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    3. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    5. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    6. Baosheng Yuan & Kan Chen, 2006. "Impact of investor’s varying risk aversion on the dynamics of asset price fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(2), pages 189-214, November.
    7. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    9. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    10. Sun-Chong Wang & Sai-Ping Li & Chung-Ching Tai & Shu-Heng Che, 2009. "Statistical properties of an experimental political futures market," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 9-16.
    11. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    12. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    13. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    14. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    15. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.
    16. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    17. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    18. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    19. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Ivanov, P.Ch & Keitt, T.H & Plerou, V, 2000. "Scale invariance and universality: organizing principles in complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 60-68.
    20. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jeicoo:v:4:y:2009:i:2:p:213-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.