IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v49y2025i3d10.1007_s10878-025-01276-5.html
   My bibliography  Save this article

Mathematical models for the one-dimensional cutting stock problem with setups and open stacks

Author

Listed:
  • Gabriel Gazzinelli Guimarães

    (Universidade Estadual de Campinas (UNICAMP))

  • Kelly Cristina Poldi

    (Universidade Estadual de Campinas (UNICAMP))

  • Mateus Martin

    (Universidade Federal de São Carlos (UFSCar))

Abstract

In real-life production, the cutting stock problem is often associated with additional constraints and objectives. Among the auxiliary objectives, two of the most relevant are the minimization of the number of different cutting patterns used and the minimization of the maximum number of simultaneously open stacks. The first auxiliary objective arises in manufacturing environments where the adjustment of the cutting tools when changing the cutting patterns incurs increased costs and time spent in production. The second is crucial to face scenarios where the space near the cutting machine or the number of automatic unloading stations is limited. In this paper, we address the one-dimensional cutting stock problem, considering the additional goals of minimizing the number of different cutting patterns used and the maximum number of simultaneously open stacks. We propose two Integer Linear Programming (ILP) formulations and a Constraint Programming (CP) model for the problem. Moreover, we develop new upper bounds on the frequency of the cutting patterns in a solution and address some special cases in which the problem may be simplified. All three approaches are embedded into an iterative exact framework to find efficient solutions. We perform computational experiments using two sets of instances from the literature. The proposed approaches proved effective in determining the entire Pareto front for small problem instances, and several solutions for medium-sized instances with minimum trim loss, a reduced maximum number of simultaneously open stacks, and a small number of different used cutting patterns.

Suggested Citation

  • Gabriel Gazzinelli Guimarães & Kelly Cristina Poldi & Mateus Martin, 2025. "Mathematical models for the one-dimensional cutting stock problem with setups and open stacks," Journal of Combinatorial Optimization, Springer, vol. 49(3), pages 1-35, April.
  • Handle: RePEc:spr:jcomop:v:49:y:2025:i:3:d:10.1007_s10878-025-01276-5
    DOI: 10.1007/s10878-025-01276-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-025-01276-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-025-01276-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    3. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    4. Cui, Yaodong & Zhong, Cheng & Yao, Yi, 2015. "Pattern-set generation algorithm for the one-dimensional cutting stock problem with setup cost," European Journal of Operational Research, Elsevier, vol. 243(2), pages 540-546.
    5. Gleb Belov & Guntram Scheithauer, 2007. "Setup and Open-Stacks Minimization in One-Dimensional Stock Cutting," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 27-35, February.
    6. Marco Antonio Moreira de Carvalho & Nei Yoshihiro Soma, 2015. "A breadth-first search applied to the minimization of the open stacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(6), pages 936-946, June.
    7. Yuen, Boon J., 1991. "Heuristics for sequencing cutting patterns," European Journal of Operational Research, Elsevier, vol. 55(2), pages 183-190, November.
    8. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    9. WOLSEY, Laurence A., 1977. "Valid inequalities, covering problems and discrete dynamic programs," LIDAM Reprints CORE 302, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Christopher S. Tang & Eric V. Denardo, 1988. "Models Arising from a Flexible Manufacturing Machine, Part II: Minimization of the Number of Switching Instants," Operations Research, INFORMS, vol. 36(5), pages 778-784, October.
    11. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    12. Mateus Martin & Horacio Hideki Yanasse & Luiz Leduíno Salles-Neto, 2022. "Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 557-582, August.
    13. Umetani, Shunji & Yagiura, Mutsunori & Ibaraki, Toshihide, 2003. "One-dimensional cutting stock problem to minimize the number of different patterns," European Journal of Operational Research, Elsevier, vol. 146(2), pages 388-402, April.
    14. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    15. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    16. Gonçalo R. L. Cerqueira & Sérgio S. Aguiar & Marlos Marques, 2021. "Modified Greedy Heuristic for the one-dimensional cutting stock problem," Journal of Combinatorial Optimization, Springer, vol. 42(3), pages 657-674, October.
    17. Rafael de Magalhães Dias Frinhani & Marco Antonio Moreira de Carvalho & Nei Yoshihiro Soma, 2018. "A PageRank-based heuristic for the minimization of open stacks problem," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.
    18. Christopher S. Tang & Eric V. Denardo, 1988. "Models Arising from a Flexible Manufacturing Machine, Part I: Minimization of the Number of Tool Switches," Operations Research, INFORMS, vol. 36(5), pages 767-777, October.
    19. Arbib, Claudio & Marinelli, Fabrizio & Pezzella, Ferdinando, 2012. "An LP-based tabu search for batch scheduling in a cutting process with finite buffers," International Journal of Production Economics, Elsevier, vol. 136(2), pages 287-296.
    20. Gau, T. & Wascher, G., 1995. "CUTGEN1: A problem generator for the standard one-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 84(3), pages 572-579, August.
    21. Yuen, Boon J., 1995. "Improved heuristics for sequencing cutting patterns," European Journal of Operational Research, Elsevier, vol. 87(1), pages 57-64, November.
    22. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    23. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    2. Gislaine Mara Melega & Silvio Alexandre de Araujo & Raf Jans & Reinaldo Morabito, 2023. "Formulations and exact solution approaches for a coupled bin-packing and lot-sizing problem with sequence-dependent setups," Flexible Services and Manufacturing Journal, Springer, vol. 35(4), pages 1276-1312, December.
    3. Silva, Eduardo M. & Melega, Gislaine M. & Akartunalı, Kerem & de Araujo, Silvio A., 2023. "Formulations and theoretical analysis of the one-dimensional multi-period cutting stock problem with setup cost," European Journal of Operational Research, Elsevier, vol. 304(2), pages 443-460.
    4. Wuttke, David A. & Heese, H. Sebastian, 2018. "Two-dimensional cutting stock problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(1), pages 303-315.
    5. Elisama Araújo Silva Oliveira & Elizabeth Wanner & Elisangela Martins Sá & Sérgio Ricardo Souza, 2025. "A local branching-based solution for the multi-period cutting stock problem with tardiness, earliness, and setup costs," Journal of Heuristics, Springer, vol. 31(1), pages 1-57, March.
    6. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    7. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    8. Mateus Martin & Horacio Hideki Yanasse & Luiz Leduíno Salles-Neto, 2022. "Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 557-582, August.
    9. Matthias Kaltenbrunner & Maria Anna Huka & Manfred Gronalt, 2022. "Heuristic based approach for short term production planning in highly automated customer oriented pallet production," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1087-1098, April.
    10. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    11. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    12. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    13. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    14. Morabito, Reinaldo & Belluzzo, Luciano, 2007. "Optimising the cutting of wood fibre plates in the hardboard industry," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1405-1420, December.
    15. Muter, İbrahim & Sezer, Zeynep, 2018. "Algorithms for the one-dimensional two-stage cutting stock problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 20-32.
    16. Reinertsen, Harald & Vossen, Thomas W.M., 2010. "The one-dimensional cutting stock problem with due dates," European Journal of Operational Research, Elsevier, vol. 201(3), pages 701-711, March.
    17. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    18. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    19. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    20. Malaguti, Enrico & Medina Durán, Rosa & Toth, Paolo, 2014. "Approaches to real world two-dimensional cutting problems," Omega, Elsevier, vol. 47(C), pages 99-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:49:y:2025:i:3:d:10.1007_s10878-025-01276-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.