IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v40y2020i4d10.1007_s10878-020-00638-5.html
   My bibliography  Save this article

Influence maximization problem: properties and algorithms

Author

Listed:
  • Wenguo Yang

    (University of Chinese Academy of Sciences)

  • Yapu Zhang

    (University of Chinese Academy of Sciences)

  • Ding-Zhu Du

    (University of Texas at Dallas)

Abstract

The influence maximization problem has become one of the fundamental combinatorial optimization problems over the past decade due to its extensive applications in social networks. Although a $$1-1/e$$ 1 - 1 / e approximation ratio is easily obtained using a greedy algorithm for the submodular case, how to solve the non-submodular case and enhance the solution quality deserve further study. In this paper, based on the marginal increments, we devise a non-negative decomposition property for monotone function and a non-increasing decomposition property for monotone submodular function (NDP). According to the exchange improvement (EI), a necessary condition for an optimal solution is also proposed. With the help of NDP and EI condition, an exchange improvement algorithm is proposed to improve further the quality of the solution to the non-submodular influence maximization problem. For the influence maximization, we devise effective methods to compute the influence spread and marginal gain in a successive iteration update manner. These methods make it possible to calculate the influence spread directly and accurately. Next, we design a data-dependent approximation algorithm for a non-submodular topology change problem from a marginal increment perspective.

Suggested Citation

  • Wenguo Yang & Yapu Zhang & Ding-Zhu Du, 2020. "Influence maximization problem: properties and algorithms," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 907-928, November.
  • Handle: RePEc:spr:jcomop:v:40:y:2020:i:4:d:10.1007_s10878-020-00638-5
    DOI: 10.1007/s10878-020-00638-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00638-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00638-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Xu Zhu & Jieun Yu & Wonjun Lee & Donghyun Kim & Shan Shan & Ding-Zhu Du, 2010. "New dominating sets in social networks," Journal of Global Optimization, Springer, vol. 48(4), pages 633-642, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liman Du & Shengminjie Chen & Suixiang Gao & Wenguo Yang, 2022. "Nonsubmodular constrained profit maximization from increment perspective," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2598-2625, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yijing Wang & Dachuan Xu & Yishui Wang & Dongmei Zhang, 2020. "Non-submodular maximization on massive data streams," Journal of Global Optimization, Springer, vol. 76(4), pages 729-743, April.
    2. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    3. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    4. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    5. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    8. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    9. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    10. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    11. Lehmann, Benny & Lehmann, Daniel & Nisan, Noam, 2006. "Combinatorial auctions with decreasing marginal utilities," Games and Economic Behavior, Elsevier, vol. 55(2), pages 270-296, May.
    12. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    13. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    14. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    15. Laetitia Legalais, 2015. "L'Influence D'Un Blocage De Carriere Sur La Construction De L'Identite Professionnelle : Le Cas Des Contrôleurs De Gestion," Post-Print hal-01188764, HAL.
    16. Thang N. Dinh & Yilin Shen & Dung T. Nguyen & My T. Thai, 2014. "On the approximability of positive influence dominating set in social networks," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 487-503, April.
    17. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    18. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    19. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    20. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:40:y:2020:i:4:d:10.1007_s10878-020-00638-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.