IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v28y2014i1d10.1007_s10878-014-9718-0.html
   My bibliography  Save this article

On risk-averse maximum weighted subgraph problems

Author

Listed:
  • Maciej Rysz

    (University of Iowa)

  • Mohammad Mirghorbani

    (University of Iowa)

  • Pavlo Krokhmal

    (University of Iowa)

  • Eduardo L. Pasiliao

    (Air Force Research Lab)

Abstract

In this work, we consider a class of risk-averse maximum weighted subgraph problems (R-MWSP). Namely, assuming that each vertex of the graph is associated with a stochastic weight, such that the joint distribution is known, the goal is to obtain a subgraph of minimum risk satisfying a given hereditary property. We employ a stochastic programming framework that is based on the formalism of modern theory of risk measures in order to find minimum-risk hereditary structures in graphs with stochastic vertex weights. The introduced form of risk function for measuring the risk of subgraphs ensures that optimal solutions of R-MWS problems represent maximal subgraphs. A graph-based branch-and-bound (BnB) algorithm for solving the proposed problems is developed and illustrated on a special case of risk-averse maximum weighted clique problem. Numerical experiments on randomly generated Erdös-Rényi graphs demonstrate the computational performance of the developed BnB.

Suggested Citation

  • Maciej Rysz & Mohammad Mirghorbani & Pavlo Krokhmal & Eduardo L. Pasiliao, 2014. "On risk-averse maximum weighted subgraph problems," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 167-185, July.
  • Handle: RePEc:spr:jcomop:v:28:y:2014:i:1:d:10.1007_s10878-014-9718-0
    DOI: 10.1007/s10878-014-9718-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-014-9718-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-014-9718-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. PAVLO A. Krokhmal, 2007. "Higher moment coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 373-387.
    2. Alexey Sorokin & Vladimir Boginski & Artyom Nahapetyan & Panos M. Pardalos, 2013. "Computational risk management techniques for fixed charge network flow problems with uncertain arc failures," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 99-122, January.
    3. Svyatoslav Trukhanov & Chitra Balasubramaniam & Balabhaskar Balasundaram & Sergiy Butenko, 2013. "Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations," Computational Optimization and Applications, Springer, vol. 56(1), pages 113-130, September.
    4. Gregory D. Glockner & George L. Nemhauser, 2000. "A Dynamic Network Flow Problem with Uncertain arc Capacities: Formulation and Problem Structure," Operations Research, INFORMS, vol. 48(2), pages 233-242, April.
    5. Anupam Gupta & Viswanath Nagarajan & R. Ravi, 2012. "Technical Note---Approximation Algorithms for VRP with Stochastic Demands," Operations Research, INFORMS, vol. 60(1), pages 123-127, February.
    6. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    7. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    8. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    9. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
    2. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    3. Şuvak, Zeynep & Altınel, İ. Kuban & Aras, Necati, 2020. "Exact solution algorithms for the maximum flow problem with additional conflict constraints," European Journal of Operational Research, Elsevier, vol. 287(2), pages 410-437.
    4. Oleksandra Yezerska & Sergiy Butenko & Vladimir L. Boginski, 2018. "Detecting robust cliques in graphs subject to uncertain edge failures," Annals of Operations Research, Springer, vol. 262(1), pages 109-132, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
    2. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
    3. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    4. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    5. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    6. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    7. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    8. Alexander Vinel & Pavlo A. Krokhmal, 2017. "Certainty equivalent measures of risk," Annals of Operations Research, Springer, vol. 249(1), pages 75-95, February.
    9. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    10. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    11. Alexey Sorokin & Vladimir Boginski & Artyom Nahapetyan & Panos M. Pardalos, 2013. "Computational risk management techniques for fixed charge network flow problems with uncertain arc failures," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 99-122, January.
    12. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2017. "Statistical estimation of composite risk functionals and risk optimization problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 737-760, August.
    13. Baha Alzalg, 2016. "The Algebraic Structure of the Arbitrary-Order Cone," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 32-49, April.
    14. Zhiping Chen & Qianhui Hu & Ruiyue Lin, 2016. "Performance ratio-based coherent risk measure and its application," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 681-693, May.
    15. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    16. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    17. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    18. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    19. Mikhail Zhitlukhin, 2018. "Monotone Sharpe ratios and related measures of investment performance," Papers 1809.10193, arXiv.org, revised May 2021.
    20. Alexander Vinel & Pavlo Krokhmal, 2014. "On Valid Inequalities for Mixed Integer p-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 439-456, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:28:y:2014:i:1:d:10.1007_s10878-014-9718-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.