IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v26y2013i1d10.1007_s10878-012-9460-4.html
   My bibliography  Save this article

On the optimality of the TLS algorithm for solving the online-list scheduling problem with two job types on a set of multipurpose machines

Author

Listed:
  • Shlomo Karhi

    (Ben-Gurion University of the Negev)

  • Dvir Shabtay

    (Ben-Gurion University of the Negev)

Abstract

In this paper we study the optimality of the TLS algorithm for solving the online scheduling problem of minimizing the makespan on a set of m multipurpose machines, where there are two different job types and each job type can only be processed on a unique subset of machines. The literature shows that the TLS algorithm is optimal for the special cases where either m=2 or where all processing times are restricted to unity. We show that the TLS algorithm is optimal also for the special cases where the job processing times are either job type or machine set dependent. For both cases, the optimality of the TLS algorithm is proven by showing that its competitive ratio matches the lower bound for any processing set and processing time parameters.

Suggested Citation

  • Shlomo Karhi & Dvir Shabtay, 2013. "On the optimality of the TLS algorithm for solving the online-list scheduling problem with two job types on a set of multipurpose machines," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 198-222, July.
  • Handle: RePEc:spr:jcomop:v:26:y:2013:i:1:d:10.1007_s10878-012-9460-4
    DOI: 10.1007/s10878-012-9460-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9460-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9460-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiwei Jiang, 2008. "Online scheduling on parallel machines with two GoS levels," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 28-38, July.
    2. Celia A. Glass & Hans Kellerer, 2007. "Parallel machine scheduling with job assignment restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 250-257, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leung, Joseph Y.-T. & Li, Chung-Lun, 2016. "Scheduling with processing set restrictions: A literature update," International Journal of Production Economics, Elsevier, vol. 175(C), pages 1-11.
    2. Oron, Daniel & Shabtay, Dvir & Steiner, George, 2015. "Single machine scheduling with two competing agents and equal job processing times," European Journal of Operational Research, Elsevier, vol. 244(1), pages 86-99.
    3. Goldberg, Noam & Karhi, Shlomo, 2019. "Online packing of arbitrary sized items into designated and multipurpose bins," European Journal of Operational Research, Elsevier, vol. 279(1), pages 54-67.
    4. Jueliang Hu & Yiwei Jiang & Ping Zhou & An Zhang & Qinghui Zhang, 2017. "Total completion time minimization in online hierarchical scheduling of unit-size jobs," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 866-881, April.
    5. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    6. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam Akaria & Leah Epstein, 2023. "Bin stretching with migration on two hierarchical machines," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 111-153, August.
    2. Ming Liu & Chengbin Chu & Yinfeng Xu & Feifeng Zheng, 2011. "Semi-online scheduling on 2 machines under a grade of service provision with bounded processing times," Journal of Combinatorial Optimization, Springer, vol. 21(1), pages 138-149, January.
    3. Karhi, Shlomo & Shabtay, Dvir, 2014. "Online scheduling of two job types on a set of multipurpose machines," International Journal of Production Economics, Elsevier, vol. 150(C), pages 155-162.
    4. Kangbok Lee & Byung‐Cheon Choi & Joseph Y‐T. Leung & Michael L. Pinedo & Dirk Briskorn, 2012. "Minimizing the total weighted delivery time in container transportation scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 266-277, April.
    5. Islam Akaria & Leah Epstein, 2022. "Online scheduling with migration on two hierarchical machines," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3535-3548, December.
    6. Li, Chung-Lun & Wang, Xiuli, 2010. "Scheduling parallel machines with inclusive processing set restrictions and job release times," European Journal of Operational Research, Elsevier, vol. 200(3), pages 702-710, February.
    7. Lee, Kangbok & Hwang, Hark-Chin & Lim, Kyungkuk, 2014. "Semi-online scheduling with GoS eligibility constraints," International Journal of Production Economics, Elsevier, vol. 153(C), pages 204-214.
    8. Jinwen Ou & Joseph Y.‐T. Leung & Chung‐Lun Li, 2008. "Scheduling parallel machines with inclusive processing set restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 328-338, June.
    9. Zhiyi Tan & An Zhang, 2010. "A note on hierarchical scheduling on two uniform machines," Journal of Combinatorial Optimization, Springer, vol. 20(1), pages 85-95, July.
    10. Kangbok Lee & Joseph Leung & Michael Pinedo, 2013. "Makespan minimization in online scheduling with machine eligibility," Annals of Operations Research, Springer, vol. 204(1), pages 189-222, April.
    11. An Zhang & Yiwei Jiang & Lidan Fan & Jueliang Hu, 2015. "Optimal online algorithms on two hierarchical machines with tightly-grouped processing times," Journal of Combinatorial Optimization, Springer, vol. 29(4), pages 781-795, May.
    12. Jinwen Ou & Xueling Zhong & Xiangtong Qi, 2016. "Scheduling parallel machines with inclusive processing set restrictions and job rejection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 667-681, December.
    13. Jueliang Hu & Yiwei Jiang & Ping Zhou & An Zhang & Qinghui Zhang, 2017. "Total completion time minimization in online hierarchical scheduling of unit-size jobs," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 866-881, April.
    14. Li-ying Hou & Liying Kang, 2012. "Online scheduling on uniform machines with two hierarchies," Journal of Combinatorial Optimization, Springer, vol. 24(4), pages 593-612, November.
    15. Zhenbo Wang & Wenxun Xing, 2010. "Worst-case analysis for on-line service policies," Journal of Combinatorial Optimization, Springer, vol. 19(1), pages 107-122, January.
    16. Mallik Angalakudati & Siddharth Balwani & Jorge Calzada & Bikram Chatterjee & Georgia Perakis & Nicolas Raad & Joline Uichanco, 2014. "Business Analytics for Flexible Resource Allocation Under Random Emergencies," Management Science, INFORMS, vol. 60(6), pages 1552-1573, June.
    17. Huiqiao Su & Michael Pinedo & Guohua Wan, 2017. "Parallel machine scheduling with eligibility constraints: A composite dispatching rule to minimize total weighted tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 249-267, April.
    18. Wu, Yong & Ji, Min & Yang, Qifan, 2012. "Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service provision," International Journal of Production Economics, Elsevier, vol. 135(1), pages 367-371.
    19. Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "Scheduling with processing set restrictions: A survey," International Journal of Production Economics, Elsevier, vol. 116(2), pages 251-262, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:26:y:2013:i:1:d:10.1007_s10878-012-9460-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.