IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v42y2025i1d10.1007_s00357-024-09486-y.html
   My bibliography  Save this article

An Effective Crow Search Algorithm and Its Application in Data Clustering

Author

Listed:
  • Rajesh Ranjan

    (National Institute of Technology)

  • Jitender Kumar Chhabra

    (National Institute of Technology)

Abstract

In today’s data-centric world, the significance of generated data has increased manifold. Clustering the data into a similar group is one of the dynamic research areas among other data practices. Several algorithms’ proposals exist for clustering. Apart from the traditional algorithms, researchers worldwide have successfully employed some metaheuristic approaches for clustering. The crow search algorithm (CSA) is a recently introduced swarm-based algorithm that imitates the performance of the crow. An effective crow search algorithm (ECSA) has been proposed in the present work, which dynamically attunes its parameter to sustain the search balance and perform an oppositional-based random initialization. The ECSA is evaluated over CEC2019 Benchmark Functions and simulated for data clustering tasks compared with well-known metaheuristic approaches and famous partition-based K-means algorithm over benchmark datasets. The results reveal that the ECSA performs better than other algorithms in the context of external cluster quality metrics and convergence rate.

Suggested Citation

  • Rajesh Ranjan & Jitender Kumar Chhabra, 2025. "An Effective Crow Search Algorithm and Its Application in Data Clustering," Journal of Classification, Springer;The Classification Society, vol. 42(1), pages 134-162, March.
  • Handle: RePEc:spr:jclass:v:42:y:2025:i:1:d:10.1007_s00357-024-09486-y
    DOI: 10.1007/s00357-024-09486-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-024-09486-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-024-09486-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
    2. Maurice Roux, 2018. "A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 345-366, July.
    3. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    4. Michael Buckland & Fredric Gey, 1994. "The relationship between Recall and Precision," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 45(1), pages 12-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    2. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    3. Yueyong Wang & Xuebing Gao & Yu Sun & Yuanyuan Liu & Libin Wang & Mengqi Liu, 2024. "Sh-DeepLabv3+: An Improved Semantic Segmentation Lightweight Network for Corn Straw Cover Form Plot Classification," Agriculture, MDPI, vol. 14(4), pages 1-19, April.
    4. Denitsa ZHECHEVA & Nayden NENKOV, 2022. "Business demands for processing unstructured textual data – text mining techniques for companies to implement," Access Journal, Access Press Publishing House, vol. 3(2), pages 107-120, April.
    5. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    6. Fei Zhu & Quan Liu & Yuchen Fu & Bairong Shen, 2014. "Segmentation of Neuronal Structures Using SARSA (λ)-Based Boundary Amendment with Reinforced Gradient-Descent Curve Shape Fitting," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-19, March.
    7. Michael P. B. Gallaugher & Paul D. McNicholas, 2019. "On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 232-265, July.
    8. Matteo Manca & Ludovico Boratto & Salvatore Carta, 2018. "Behavioral data mining to produce novel and serendipitous friend recommendations in a social bookmarking system," Information Systems Frontiers, Springer, vol. 20(4), pages 825-839, August.
    9. Jaehong Yu & Hua Zhong & Seoung Bum Kim, 2020. "An Ensemble Feature Ranking Algorithm for Clustering Analysis," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 462-489, July.
    10. Kemmawadee Preedalikit & Daniel Fernández & Ivy Liu & Louise McMillan & Marta Nai Ruscone & Roy Costilla, 2024. "Row mixture-based clustering with covariates for ordinal responses," Computational Statistics, Springer, vol. 39(5), pages 2511-2555, July.
    11. Matteo Manca & Ludovico Boratto & Salvatore Carta, 0. "Behavioral data mining to produce novel and serendipitous friend recommendations in a social bookmarking system," Information Systems Frontiers, Springer, vol. 0, pages 1-15.
    12. Regal, Andrés & Gonzalez-Feliu, Jesús & Rodriguez, Michelle, 2023. "A spatio-functional logistics profile clustering analysis method for metropolitan areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    13. Tien-Chin Wang & Binh Ngoc Phan & Thuy Thi Thu Nguyen, 2021. "Evaluating Operation Performance in Higher Education: The Case of Vietnam Public Universities," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
    14. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
    15. Cappozzo, Andrea & Greselin, Francesca & Murphy, Thomas Brendan, 2021. "Robust variable selection for model-based learning in presence of adulteration," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    16. Suner Aslı, 2019. "Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.
    17. Dariush Najarzadeh, 2019. "Testing equality of standardized generalized variances of k multivariate normal populations with arbitrary dimensions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 593-623, December.
    18. Chris Davis & Graham Aid, 2022. "Machine learning‐assisted industrial symbiosis: Testing the ability of word vectors to estimate similarity for material substitutions," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 27-43, February.
    19. Madhusudanan Navinchandran & Michael E. Sharp & Michael P. Brundage & Thurston B. Sexton, 2022. "Discovering critical KPI factors from natural language in maintenance work orders," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1859-1877, August.
    20. Rui Jin & Chunyuan Huang & Pei Wang & Junyong Ma & Yiliang Wan, 2023. "Identification of Inefficient Urban Land for Urban Regeneration Considering Land Use Differentiation," Land, MDPI, vol. 12(10), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:42:y:2025:i:1:d:10.1007_s00357-024-09486-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.