IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v37y2020i2d10.1007_s00357-019-9308-z.html
   My bibliography  Save this article

Classification for Time Series Data. An Unsupervised Approach Based on Reduction of Dimensionality

Author

Listed:
  • M. Isabel Landaluce-Calvo

    (Universidad de Burgos)

  • Juan I. Modroño-Herrán

    (University of the Basque Country UPV/EHU)

Abstract

In this work we use a novel methodology for the classification of time series data, through a natural, unsupervised data learning process. This strategy is based on the sequential use of Multiple Factor Analysis and an ascending Hierarchical Classification Analysis. These two exploratory techniques complement each other and allow for a clustering of the series based on their time paths and on the reduction of the original dimensionality of the data. The extensive set of graphic and numerical tools available for both methods leads to an exhaustive and rigorous visual and metric analysis of the different trajectories, including their differences and similarities, which will turn out to be responsible of the classes ultimately obtained. An application from Finance, used previously in the literature, highlights the versatility and suitability of this approach.

Suggested Citation

  • M. Isabel Landaluce-Calvo & Juan I. Modroño-Herrán, 2020. "Classification for Time Series Data. An Unsupervised Approach Based on Reduction of Dimensionality," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 380-398, July.
  • Handle: RePEc:spr:jclass:v:37:y:2020:i:2:d:10.1007_s00357-019-9308-z
    DOI: 10.1007/s00357-019-9308-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-019-9308-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-019-9308-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Escofier, B. & Pages, J., 1994. "Multiple factor analysis (AFMULT package)," Computational Statistics & Data Analysis, Elsevier, vol. 18(1), pages 121-140, August.
    2. Juan Vilar & José Vilar & Sonia Pértega, 2009. "Classifying Time Series Data: A Nonparametric Approach," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 3-28, April.
    3. Alonso, A.M. & Berrendero, J.R. & Hernandez, A. & Justel, A., 2006. "Time series clustering based on forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 762-776, November.
    4. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    2. Ozan Cinar & Ozlem Ilk & Cem Iyigun, 2018. "Clustering of short time-course gene expression data with dissimilar replicates," Annals of Operations Research, Springer, vol. 263(1), pages 405-428, April.
    3. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    4. Margherita Gerolimetto & Stefano Magrini, 2022. "Weighting in clustering time series: an application to Covid-19 data," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(4), pages 4-12, October-D.
    5. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    6. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    7. Delimiro Visbal-Cadavid & Mónica Martínez-Gómez & Rolando Escorcia-Caballero, 2020. "Exploring University Performance through Multiple Factor Analysis: A Case Study," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    8. Florence Jacquet & A Aboul-Naga & Bernard Hubert, 2020. "The contribution of ARIMNet to address livestock systems resilience in the Mediterranean region," Post-Print hal-03625860, HAL.
    9. Yu Li & Ji Zheng & Fei Li & Xueting Jin & Chen Xu, 2017. "Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    10. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    11. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    12. Mohamed Ghali & Maha Ben Jaballah & Nejla Ben Arfa & Annie Sigwalt, 2022. "Analysis of factors that influence adoption of agroecological practices in viticulture," Review of Agricultural, Food and Environmental Studies, Springer, vol. 103(3), pages 179-209, September.
    13. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
    14. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    15. Alary, V. & Messad, S. & Aboul-Naga, A. & Osman, M.A. & Daoud, I. & Bonnet, P. & Juanes, X. & Tourrand, J.F., 2014. "Livelihood strategies and the role of livestock in the processes of adaptation to drought in the Coastal Zone of Western Desert (Egypt)," Agricultural Systems, Elsevier, vol. 128(C), pages 44-54.
    16. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    17. Altuzarra Amaia, 2010. "Convergence in the Innovative Performance of the European Union Countries," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 17(1), pages 22-38, May.
    18. Dongjun Kim & Jinsung Yun & Kijung Kim & Seungil Lee, 2021. "A Comparative Study of the Robustness and Resilience of Retail Areas in Seoul, Korea before and after the COVID-19 Outbreak, Using Big Data," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    19. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    20. Nadine Baudot-Trajtenberg & Itamar Caspi, 2018. "Measuring the importance of global factors in determining inflation in Israel," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and deglobalisation, volume 100, pages 183-208, Bank for International Settlements.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:37:y:2020:i:2:d:10.1007_s00357-019-9308-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.