IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i2d10.1007_s13253-023-00588-5.html
   My bibliography  Save this article

Assessing Spatial Stationarity and Segmenting Spatial Processes into Stationary Components

Author

Listed:
  • ShengLi Tzeng

    (National Sun Yat-Sen University)

  • Bo-Yu Chen

    (Purdue University)

  • Hsin-Cheng Huang

    (Academia Sinica)

Abstract

In this research, we propose a novel technique for visualizing nonstationarity in geostatistics, particularly when confronted with a single realization of data at irregularly spaced locations. Our method hinges on formulating a statistic that tracks a stable microergodic parameter of the exponential covariance function, allowing us to address the intricate challenges of nonstationary processes that lack repeated measurements. We implement the fused lasso technique to elucidate nonstationary patterns at various resolutions. For prediction purposes, we segment the spatial domain into stationary sub-regions via Voronoi tessellations. Additionally, we devise a robust test for stationarity based on contrasting the sample means of our proposed statistics between two selected Voronoi subregions. The effectiveness of our method is demonstrated through simulation studies and its application to a precipitation dataset in Colorado. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • ShengLi Tzeng & Bo-Yu Chen & Hsin-Cheng Huang, 2024. "Assessing Spatial Stationarity and Segmenting Spatial Processes into Stationary Components," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 301-319, June.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:2:d:10.1007_s13253-023-00588-5
    DOI: 10.1007/s13253-023-00588-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00588-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00588-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuentes, Montserrat, 2005. "A formal test for nonstationarity of spatial stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 30-54, September.
    2. Soutir Bandyopadhyay & Suhasini Subba Rao, 2017. "A test for stationarity for irregularly spaced spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 95-123, January.
    3. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    4. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingjin Chu & Jialuo Liu & Jun Zhu & Haonan Wang, 2022. "Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 689-713, August.
    2. Christophe Abraham, 2024. "An informative prior distribution on functions with application to functional regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 357-373, May.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Bailly, Hugo & Mortier, Frédéric & Giraud, Gaël, 2024. "Empirical analysis of a debt-augmented Goodwin model for the United States," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 619-633.
    7. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    8. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    9. Angelo Milfont & Alvaro Veiga, 2025. "Structural breaks detection and variable selection in dynamic linear regression via the Iterative Fused LASSO in high dimension," Papers 2502.20816, arXiv.org, revised Apr 2025.
    10. Li, Houjian & Tang, Mengqian & Cao, Andi & Guo, Lili, 2024. "How to reduce firm pollution discharges: Does political leaders' gender matter?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    11. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    12. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    13. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    14. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    15. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    16. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Souvik Seal & Qunhua Li & Elle Butler Basner & Laura M Saba & Katerina Kechris, 2023. "RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks," PLOS Computational Biology, Public Library of Science, vol. 19(1), pages 1-26, January.
    18. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    19. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    20. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:2:d:10.1007_s13253-023-00588-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.