IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v26y2021i2d10.1007_s13253-021-00438-2.html
   My bibliography  Save this article

Variance Propagation for Density Surface Models

Author

Listed:
  • Mark V. Bravington

    (Commonwealth Scientific and Industrial Research Organisation Marine Laboratory)

  • David L. Miller

    (University of St Andrews)

  • Sharon L. Hedley

Abstract

Spatially explicit estimates of population density, together with appropriate estimates of uncertainty, are required in many management contexts. Density surface models (DSMs) are a two-stage approach for estimating spatially varying density from distance sampling data. First, detection probabilities—perhaps depending on covariates—are estimated based on details of individual encounters; next, local densities are estimated using a GAM, by fitting local encounter rates to location and/or spatially varying covariates while allowing for the estimated detectabilities. One criticism of DSMs has been that uncertainty from the two stages is not usually propagated correctly into the final variance estimates. We show how to reformulate a DSM so that the uncertainty in detection probability from the distance sampling stage (regardless of its complexity) is captured as an extra random effect in the GAM stage. In effect, we refit an approximation to the detection function model at the same time as fitting the spatial model. This allows straightforward computation of the overall variance via exactly the same software already needed to fit the GAM. A further extension allows for spatial variation in group size, which can be an important covariate for detectability as well as directly affecting abundance. We illustrate these models using point transect survey data of Island Scrub-Jays on Santa Cruz Island, CA, and harbour porpoise from the SCANS-II line transect survey of European waters. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Mark V. Bravington & David L. Miller & Sharon L. Hedley, 2021. "Variance Propagation for Density Surface Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 306-323, June.
  • Handle: RePEc:spr:jagbes:v:26:y:2021:i:2:d:10.1007_s13253-021-00438-2
    DOI: 10.1007/s13253-021-00438-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00438-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00438-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. Fernanda F. C. Marques & Stephen T. Buckland, 2003. "Incorporating Covariates into Standard Line Transect Analyses," Biometrics, The International Biometric Society, vol. 59(4), pages 924-935, December.
    3. Hans J. Skaug & Tore Schweder, 1999. "Hazard Models for Line Transect Surveys with Independent Observers," Biometrics, The International Biometric Society, vol. 55(1), pages 29-36, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    2. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    3. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    4. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    5. Earl F Becker & Aaron M Christ, 2015. "A Unimodal Model for Double Observer Distance Sampling Surveys," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    6. Sihvonen, Markus, 2021. "Yield curve momentum," Research Discussion Papers 15/2021, Bank of Finland.
    7. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    8. Dillon T. Fogarty & Caleb P. Roberts & Daniel R. Uden & Victoria M. Donovan & Craig R. Allen & David E. Naugle & Matthew O. Jones & Brady W. Allred & Dirac Twidwell, 2020. "Woody Plant Encroachment and the Sustainability of Priority Conservation Areas," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    9. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    10. Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
    11. Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
    12. Robert J. Hill & Michael Scholz, 2014. "Incorporating Geospatial Data in House Price Indexes: A Hedonic Imputation Approach with Splines," Graz Economics Papers 2014-05, University of Graz, Department of Economics.
    13. Cathrine Ulla Jensen & Toke Emil Panduro, 2016. "PanJen: A test for functional form with continuous variables," IFRO Working Paper 2016/08, University of Copenhagen, Department of Food and Resource Economics.
    14. David L Miller & Len Thomas, 2015. "Mixture Models for Distance Sampling Detection Functions," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-19, March.
    15. Ronald E. Gangnon & Natasha K. Stout & Oguzhan Alagoz & John M. Hampton & Brian L. Sprague & Amy Trentham-Dietz, 2018. "Contribution of Breast Cancer to Overall Mortality for US Women," Medical Decision Making, , vol. 38(1_suppl), pages 24-31, April.
    16. Yuko Araki & Atsushi Kawaguchi & Fumio Yamashita, 2013. "Regularized logistic discrimination with basis expansions for the early detection of Alzheimer’s disease based on three-dimensional MRI data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 109-119, March.
    17. S. T. Buckland & C. S. Oedekoven & D. L. Borchers, 2016. "Model-Based Distance Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 58-75, March.
    18. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    19. Megan K. Jennings & Emily Haeuser & Diane Foote & Rebecca L. Lewison & Erin Conlisk, 2020. "Planning for Dynamic Connectivity: Operationalizing Robust Decision-Making and Prioritization Across Landscapes Experiencing Climate and Land-Use Change," Land, MDPI, vol. 9(10), pages 1-18, September.
    20. Robert J. Hill & Alicia N. Rambaldi & Michael Scholz, 2021. "Higher frequency hedonic property price indices: a state-space approach," Empirical Economics, Springer, vol. 61(1), pages 417-441, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:26:y:2021:i:2:d:10.1007_s13253-021-00438-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.