IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/vyid10.1007_s10796-016-9706-2.html
   My bibliography  Save this article

An evolutionary system for ozone concentration forecasting

Author

Listed:
  • Mauro Castelli

    (Universidade Nova de Lisboa)

  • Ivo Gonçalves

    (Universidade Nova de Lisboa
    University of Coimbra)

  • Leonardo Trujillo

    (Tree-Laboratory, Instituto Tecnológico de Tijuana)

  • Aleš Popovič

    (Universidade Nova de Lisboa
    University of Ljubljana, Faculty of Economics)

Abstract

Nowadays, with more than 50 % of the world’s population living in urban areas, cities are facing important environmental challenges. Among them, air pollution has emerged as one of the most important concerns, taking into account the social costs related to the effect of polluted air. According to a report of the World Health Organization, approximately seven million people die each year from the effects of air pollution. Despite this fact, the same report suggests that cities could greatly improve their air quality through local measures by exploiting modern and efficient solutions for smart infrastructures. Ideally, this approach requires insights of how pollutant levels change over time in specific locations. To tackle this problem, we present an evolutionary system for the prediction of pollutants levels based on a recently proposed variant of genetic programming. This system is designed to predict the amount of ozone level, based on the concentration of other pollutants collected by sensors disposed in critical areas of a city. An analysis of data related to the region of Yuen Long (one of the most polluted areas of China), shows the suitability of the proposed system for addressing the problem at hand. In particular, the system is able to predict the ozone level with greater accuracy with respect to other techniques that are commonly used to tackle similar forecasting problems.

Suggested Citation

  • Mauro Castelli & Ivo Gonçalves & Leonardo Trujillo & Aleš Popovič, 0. "An evolutionary system for ozone concentration forecasting," Information Systems Frontiers, Springer, vol. 0, pages 1-10.
  • Handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9706-2
    DOI: 10.1007/s10796-016-9706-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-016-9706-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-016-9706-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chittaranjan Hota & Shambhu Upadhyaya & Jamal Nazzal Al-Karaki, 2015. "Advances in secure knowledge management in the big data era," Information Systems Frontiers, Springer, vol. 17(5), pages 983-986, October.
    2. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    3. Castelli, Mauro & Vanneschi, Leonardo & De Felice, Matteo, 2015. "Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case," Energy Economics, Elsevier, vol. 47(C), pages 37-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Castelli & Ivo Gonçalves & Leonardo Trujillo & Aleš Popovič, 2017. "An evolutionary system for ozone concentration forecasting," Information Systems Frontiers, Springer, vol. 19(5), pages 1123-1132, October.
    2. Bram Klievink & Bart-Jan Romijn & Scott Cunningham & Hans Bruijn, 2017. "Big data in the public sector: Uncertainties and readiness," Information Systems Frontiers, Springer, vol. 19(2), pages 267-283, April.
    3. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Zhaoyu Li & Rui Xu & Pingyuan Cui & Lida Xu & Wu He, 0. "Geometry-based propagation of temporal constraints," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
    5. Arfi, Wissal Ben & Nasr, Imed Ben & Kondrateva, Galina & Hikkerova, Lubica, 2021. "The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    6. Hong Jiang & Shuyu Sun & Hongtao Xu & Shukuan Zhao & Yong Chen, 2020. "Enterprises' network structure and their technology standardization capability in Industry 4.0," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 749-765, July.
    7. Waleed Al-Zaidi & Farsat Shaban & Dilgash Qadir M., 2022. "Internet of Things in Enhancing Competitive Capabilities: An Exploratory Study," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 8(2), pages 25-32, January.
    8. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    9. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    10. Yan Mandy Dang & Yulei Gavin Zhang & James Morgan, 0. "Integrating switching costs to information systems adoption: An empirical study on learning management systems," Information Systems Frontiers, Springer, vol. 0, pages 1-20.
    11. Joseph Chambers & James Evans, 2020. "Informal urbanism and the Internet of Things: Reliability, trust and the reconfiguration of infrastructure," Urban Studies, Urban Studies Journal Limited, vol. 57(14), pages 2918-2935, November.
    12. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    13. Till Blesik & Markus Bick & Tyge-F. Kummer, 2022. "A Conceptualisation of Crowd Knowledge," Information Systems Frontiers, Springer, vol. 24(5), pages 1647-1665, October.
    14. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    15. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    16. Michaela Sprenger & Tobias Mettler & Robert Winter, 0. "A viability theory for digital businesses: Exploring the evolutionary changes of revenue mechanisms to support managerial decisions," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    17. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    18. Gergely Marcell Honti & Janos Abonyi, 2019. "A Review of Semantic Sensor Technologies in Internet of Things Architectures," Complexity, Hindawi, vol. 2019, pages 1-21, June.
    19. Riikka M. Sarala & Shlomo Y. Tarba & Nadia Zahoor & Huda Khan & Sir Cary L. Cooper & Ahmad Arslan, 2025. "The impact of digitalization and virtualization on technology transfer in strategic collaborative partnerships," The Journal of Technology Transfer, Springer, vol. 50(2), pages 399-416, April.
    20. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9706-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.