IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v27y2025i1d10.1007_s10796-023-10440-3.html
   My bibliography  Save this article

An Empirical Evaluation of Algorithms for Link Prediction

Author

Listed:
  • Tong Huang

    (Yunnan University)

  • Lihua Zhou

    (Yunnan University)

  • Kevin Lü

    (Brunel University)

  • Lizhen Wang

    (Yunnan University)

  • Hongmei Chen

    (Yunnan University)

  • Guowang Du

    (Yunnan University)

Abstract

Online social networks (OSNs) analysis has been widely used in the field of information systems (IS), thus link prediction, one of the most important core techniques of OSNs analysis, plays a vital role in the development of IS. Despite the recent development of numerous link prediction approaches, there is still a lack of comprehensive studies that measure and evaluate their performance, which hinders the rational selection and full utilization of existing prediction approaches. This study proposes a novel taxonomy of link prediction approaches based on their prediction principles. Furthermore, it selects eighteen representative approaches from various categories to perform an empirical evaluation on six real-world benchmark datasets. The features of different types of predication approaches have been analyzed based evaluation test results. The research provides researchers with improved understandings on link prediction approaches and offers insightful performance related information to practitioners for developing more effective information systems.

Suggested Citation

  • Tong Huang & Lihua Zhou & Kevin Lü & Lizhen Wang & Hongmei Chen & Guowang Du, 2025. "An Empirical Evaluation of Algorithms for Link Prediction," Information Systems Frontiers, Springer, vol. 27(1), pages 347-365, February.
  • Handle: RePEc:spr:infosf:v:27:y:2025:i:1:d:10.1007_s10796-023-10440-3
    DOI: 10.1007/s10796-023-10440-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-023-10440-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-023-10440-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mehmet N. Aydin & N. Ziya Perdahci, 2019. "Dynamic network analysis of online interactive platform," Information Systems Frontiers, Springer, vol. 21(2), pages 229-240, April.
    2. Sabine Matook & Susan A Brown & Johanna Rolf, 2015. "Forming an intention to act on recommendations given via online social networks," European Journal of Information Systems, Taylor & Francis Journals, vol. 24(1), pages 76-92, January.
    3. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    4. Gerald C. Kane & Sam Ransbotham, 2016. "Research Note—Content and Collaboration: An Affiliation Network Approach to Information Quality in Online Peer Production Communities," Information Systems Research, INFORMS, vol. 27(2), pages 424-439, June.
    5. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    6. Ricard L. Fogués & Jose M. Such & Agustin Espinosa & Ana Garcia-Fornes, 2014. "BFF: A tool for eliciting tie strength and user communities in social networking services," Information Systems Frontiers, Springer, vol. 16(2), pages 225-237, April.
    7. Helena Wenninger & Hanna Krasnova & Peter Buxmann, 2019. "Understanding the role of social networking sites in the subjective well-being of users: a diary study," European Journal of Information Systems, Taylor & Francis Journals, vol. 28(2), pages 126-148, March.
    8. Xiao Fang & Paul Jen-Hwa Hu & Zhepeng (Lionel) Li & Weiyu Tsai, 2013. "Predicting Adoption Probabilities in Social Networks," Information Systems Research, INFORMS, vol. 24(1), pages 128-145, March.
    9. Sharath Sasidharan & Radhika Santhanam & Daniel J. Brass & Vallabh Sambamurthy, 2012. "The Effects of Social Network Structure on Enterprise Systems Success: A Longitudinal Multilevel Analysis," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 658-678, September.
    10. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    11. Wingyan Chung & Yinqiang Zhang & Jia Pan, 2023. "A Theory-based Deep-Learning Approach to Detecting Disinformation in Financial Social Media," Information Systems Frontiers, Springer, vol. 25(2), pages 473-492, April.
    12. Gaganmeet Kaur Awal & K. K. Bharadwaj, 2019. "Leveraging collective intelligence for behavioral prediction in signed social networks through evolutionary approach," Information Systems Frontiers, Springer, vol. 21(2), pages 417-439, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Shugang Li & Ziming Wang & Beiyan Zhang & Boyi Zhu & Zhifang Wen & Zhaoxu Yu, 2022. "The Research of “Products Rapidly Attracting Users” Based on the Fully Integrated Link Prediction Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    3. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    4. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    5. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Hanbaek Lyu & Yacoub H. Kureh & Joshua Vendrow & Mason A. Porter, 2024. "Learning low-rank latent mesoscale structures in networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Bütün, Ertan & Kaya, Mehmet, 2019. "A pattern based supervised link prediction in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1136-1145.
    8. Joon Hyung Cho & Jungpyo Lee & So Young Sohn, 2021. "Predicting future technological convergence patterns based on machine learning using link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5413-5429, July.
    9. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    10. U Martin Singh-Blom & Nagarajan Natarajan & Ambuj Tewari & John O Woods & Inderjit S Dhillon & Edward M Marcotte, 2013. "Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-17, May.
    11. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    12. Wahid-Ul-Ashraf, Akanda & Budka, Marcin & Musial, Katarzyna, 2019. "How to predict social relationships — Physics-inspired approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1110-1129.
    13. Chen, Guangfu & Xu, Chen & Wang, Jingyi & Feng, Jianwen & Feng, Jiqiang, 2020. "Robust non-negative matrix factorization for link prediction in complex networks using manifold regularization and sparse learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    14. Taalbi, Josef, 2020. "Evolution and structure of technological systems - An innovation output network," Research Policy, Elsevier, vol. 49(8).
    15. Fan Zhou & Kunpeng Zhang & Bangying Wu & Yi Yang & Harry Jiannan Wang, 2021. "Unifying Online and Offline Preference for Social Link Prediction," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1400-1418, October.
    16. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2020. "Entropy based flow transfer for influence dissemination in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    17. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    18. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    19. Ankita Singh & Nanhay Singh, 2022. "An approach for predicting missing links in social network using node attribute and path information," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 944-956, April.
    20. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:27:y:2025:i:1:d:10.1007_s10796-023-10440-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.