IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v42y2011i6d10.1007_s13226-011-0028-2.html
   My bibliography  Save this article

Random partitioning models arising from size-biased picking

Author

Listed:
  • M. Ghorbel

    (Université de Sfax
    Université de Paris 13)

Abstract

This work is a continuation of the paper [9], where a particular fragmentation process of a unit interval II, according to a β-size-biased picking procedure (β ∈ ℝ) is investigated. It results from the splitting process, the production of a random countable partition of unity together with another random partitioning of some random quantity Z > 0. For such partition models, several statistical questions are addressed among which: sampling formula from the random partition of I, correlation structure, partition function, weighted partition, Rényi’s, typical and size-biased fragments size.

Suggested Citation

  • M. Ghorbel, 2011. "Random partitioning models arising from size-biased picking," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(6), pages 443-473, December.
  • Handle: RePEc:spr:indpam:v:42:y:2011:i:6:d:10.1007_s13226-011-0028-2
    DOI: 10.1007/s13226-011-0028-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-011-0028-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-011-0028-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    2. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    3. Annalina Sarra & Lara Fontanella & Simone Zio, 2019. "Identifying Students at Risk of Academic Failure Within the Educational Data Mining Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 41-60, November.
    4. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    5. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    6. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    7. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
    8. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    9. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    10. Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
    11. Jaeeun Yu & Jinsu Park & Taeryon Choi & Masahiro Hashizume & Yoonhee Kim & Yasushi Honda & Yeonseung Chung, 2021. "Nonparametric Bayesian Functional Meta-Regression: Applications in Environmental Epidemiology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 45-70, March.
    12. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2006. "Distributions of Functionals of the two Parameter Poisson-Dirichlet Process," ICER Working Papers - Applied Mathematics Series 29-2006, ICER - International Centre for Economic Research.
    13. Julyan Arbel & Stefano Favaro, 2021. "Approximating Predictive Probabilities of Gibbs-Type Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 496-519, February.
    14. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
    15. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    16. Miller Jeffrey W., 2023. "Consistency of mixture models with a prior on the number of components," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-9, January.
    17. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Martínez-Ovando Juan Carlos & Walker Stephen G., 2011. "Time-series Modelling, Stationarity and Bayesian Nonparametric Methods," Working Papers 2011-08, Banco de México.
    19. Inés M. Varas & Jorge González & Fernando A. Quintana, 2020. "A Bayesian Nonparametric Latent Approach for Score Distributions in Test Equating," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 639-666, December.
    20. Boyuan Zhang, 2022. "Incorporating Prior Knowledge of Latent Group Structure in Panel Data Models," Papers 2211.16714, arXiv.org, revised Oct 2023.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:42:y:2011:i:6:d:10.1007_s13226-011-0028-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.