IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-017-0630-8.html
   My bibliography  Save this article

A new generalization of the Marshall–Olkin Gompertz distribution

Author

Listed:
  • Shahram Yaghoobzadeh

    (Payame Noor University)

Abstract

In this paper, a new distribution of the four-parameter lifetime model called the Marshall–Olkin Gompertz is proposed on the basis of the Gompertz distribution. It is a generalization of the Marshall–Olkin Gompertz distribution having constant failure rate and can also be constant, decreasing, increasing unimodal and bathtub-shaped depending on its parameters. Some mathematical properties of this model such as the probability density function, cumulative distribution function, hazard rate function, central moments, moments of order statistics, Renyi and Shannon entropies and quantile function are derived. In addition, the maximum likelihood of its parameters method is estimated and this new distribution compared with some Gompertz distribution generalizations by means of a set of real data.

Suggested Citation

  • Shahram Yaghoobzadeh, 2017. "A new generalization of the Marshall–Olkin Gompertz distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1580-1587, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0630-8
    DOI: 10.1007/s13198-017-0630-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0630-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0630-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    2. Albert C. Bemmaor & Nicolas Glady, 2012. "Modeling Purchasing Behavior with Sudden "Death": A Flexible Customer Lifetime Model," Management Science, INFORMS, vol. 58(5), pages 1012-1021, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isidro Jesús González-Hernández & Rafael Granillo-Macías & Carlos Rondero-Guerrero & Isaías Simón-Marmolejo, 2021. "Marshall-Olkin distributions: a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9005-9029, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    2. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    3. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    4. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    5. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    6. Roberts, Leigh A., 2015. "Distribution free testing of goodness of fit in a one dimensional parameter space," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 215-222.
    7. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    8. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    9. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    10. Mukhtar M. Salah & M. El-Morshedy & M. S. Eliwa & Haitham M. Yousof, 2020. "Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    11. Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
    12. Raid Al-Aqtash & Avishek Mallick & G.G. Hamedani & Mahmoud Aldeni, 2021. "On the Gumbel-Burr XII Distribution: Regression and Application," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(6), pages 1-31, December.
    13. Jukic, Dragan & Bensic, Mirta & Scitovski, Rudolf, 2008. "On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4502-4511, May.
    14. Ahmed Z. Afify & Haitham M. Yousof & Gauss M. Cordeiro & Edwin M. M. Ortega & Zohdy M. Nofal, 2016. "The Weibull Fréchet distribution and its applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2608-2626, October.
    15. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
    16. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    17. Adelchi Azzalini & Monica Chiogna, 2004. "Some results on the stress–strength model for skew-normal variates," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 315-326.
    18. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    19. Vera, J. Fernando & Di­az-Garci­a, Jose A., 2008. "A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5055-5065, August.
    20. Joarder, Avijit & Krishna, Hare & Kundu, Debasis, 2011. "Inferences on Weibull parameters with conventional type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0630-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.