IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v16y2025i4d10.1007_s13198-025-02771-y.html
   My bibliography  Save this article

Machine learning-driven prediction of average localization error in wireless sensor networks

Author

Listed:
  • Lan Zhang

    (North China Institute of Aerospace Engineering)

  • Yunfeng Zhao

    (North China Institute of Aerospace Engineering)

Abstract

The exact localization of sensor nodes is one of the important issues in Wireless Sensor Networks (WSNs) for different applications. However, traditional methods of localization may suffer from several types of errors. This research examines a machine learning (ML) approach for predicting Average Localization Error (ALE) in WSNs. This study applies two powerful ML models: K-nearest neighbors Regression (KNNR) and Light Gradient Boosting Machine (LGBM). KNNR is light and easy to interpret, while LGBM has the capability to model complex relationships among features. Furthermore, an optimizer in the form of the Walrus Optimization Algorithm (WaOA) is utilized to boost the performance of the model. WaOA is a nature-inspired algorithm that is efficient in fine-tuning the parameters of ML models to improve their prediction accuracy. The LGWO model performed better on the test set, with an RMSE value of 0.066 and an R2 of 0.980, compared with other traditional models, such as KNN, at 0.131 and 0.915, respectively. During the testing phase, the LGWO model demonstrated the highest performance based on the Mean Squared Error (MSE) metric, achieving a value of 0.004, while the KNWO model ranked third with an MSE value of 0.015. Similarly, in the validation phase, the LGWO model achieved the best performance in terms of the Relative Absolute Error (RAE) metric, with a value of 2.799. The second-best performance in the validation phase was observed with the LGBM model, which recorded an RAE value of 3.931. In terms of the minimum prediction error and best accuracy within the entire training, validation, and testing processes, the LGWO model proves robust and reliable.

Suggested Citation

  • Lan Zhang & Yunfeng Zhao, 2025. "Machine learning-driven prediction of average localization error in wireless sensor networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(4), pages 1468-1484, April.
  • Handle: RePEc:spr:ijsaem:v:16:y:2025:i:4:d:10.1007_s13198-025-02771-y
    DOI: 10.1007/s13198-025-02771-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-025-02771-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-025-02771-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:4:d:10.1007_s13198-025-02771-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.