IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i6d10.1007_s13198-023-02104-x.html
   My bibliography  Save this article

Coordination analysis of system reliability using NSGA-II: a comparative study

Author

Listed:
  • Hemant Kumar

    (Datta Meghe Institute of Higher Education and Research)

  • R. N. Prajapati

    (Chandigarh University)

Abstract

This paper addresses the challenge of achieving a balance between reliability and cost in system design, considering the uncertainties often present in real-world situations. It introduces a methodology that utilizes the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to coordinate reliability and cost objectives. Unlike traditional approaches that treat the problem as a single objective and disregard conflicting objectives, the proposed methodology leverages fuzzy set theory to handle uncertainties effectively. The step-by-step methodology is supported by an illustrative example and is compared to NSGA-II with non-coordination and the weighted sum approach. By using NSGA-II, the methodology generates a set of Pareto-optimal solutions, considering the conflicting nature of reliability and cost. This research contributes to decision-making techniques in system design by providing an efficient approach for handling uncertainties and optimizing trade-offs between reliability and cost.

Suggested Citation

  • Hemant Kumar & R. N. Prajapati, 2023. "Coordination analysis of system reliability using NSGA-II: a comparative study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(6), pages 2514-2526, December.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02104-x
    DOI: 10.1007/s13198-023-02104-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02104-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02104-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hemant Kumar & Shiv Prasad Yadav, 2017. "NSGA-II based fuzzy multi-objective reliability analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 817-825, December.
    2. Salazar, Daniel & Rocco, Claudio M. & Galván, Blas J., 2006. "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1057-1070.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemant Kumar & Shiv Prasad Yadav, 2019. "Fuzzy rule-based reliability analysis using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 953-972, October.
    2. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    3. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    4. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    5. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    6. D E Salazar A & C M Rocco S & E Zio, 2008. "Optimal protection of complex networks exposed to a terrorist hazard: A multi-objective evolutionary approach," Journal of Risk and Reliability, , vol. 222(3), pages 327-335, September.
    7. Mohammad Pourgol-Mohammad & Amirmohsen Hejazi & Morteza Soleimani & Pejman Ghasemi & Alireza Ahmadi & Davoud Jalali-Vahid, 2017. "Design for reliability of automotive systems; case study of dry friction clutch," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 572-583, September.
    8. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    9. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    10. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    11. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H., 2024. "Adaptive systematic optimization of a multi-axis ocean wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Chenyang Ma & Wei Wang & Zhiqiang Cai & Jiangbin Zhao, 2022. "Maintenance optimization of reconfigurable systems based on multi-objective Birnbaum importance," Journal of Risk and Reliability, , vol. 236(2), pages 277-289, April.
    13. Peng, Yongbo & Ma, Yangying & Huang, Tianchen & De Domenico, Dario, 2021. "Reliability-based design optimization of adaptive sliding base isolation system for improving seismic performance of structures," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    15. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    16. Shan, Songqing & Wang, G. Gary, 2008. "Reliable design space and complete single-loop reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1218-1230.
    17. A. C. Torres-Echeverria & H. A. Thompson, 2007. "Multi-objective genetic algorithm for optimization of system safety and reliability based on IEC 61508 requirements: A practical approach," Journal of Risk and Reliability, , vol. 221(3), pages 193-205, September.
    18. Kim, Kyungmee O. & Yang, Yoonjung & Zuo, Ming J., 2013. "A new reliability allocation weight for reducing the occurrence of severe failure effects," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 81-88.
    19. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    20. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02104-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.